c语言 无重复字符的最长子串

         题目取自leetcode,无重复字符的最长字串。(T3)

        题目要求:给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。

        题目需要字串不重复且连续,从无重复这个关键词很容易联想到用哈希的思想,利用双指针、滑动数组等,时间复杂度也可以接受。


题目已经给出了函数名和传入值:“s数组”。

示例1.输入: s = "abcabcbb"
输出: 3

原因:最长且不重复字串只有“abc”所以输出3。

示例2.输入: s = "abba"
输出: 2

原因:最长不重复子串为"ab"。


法一、哈希和滑动数组

        ascii码字符在0-255,所以定义一个256的hash数组,来记录该字符是否出现过。

        定义q为前指针,p为后指针,后指针每一次都往后移动一格。hash中的值定为该键在数组中的位置加一也就是p+1,方便下一次循环判断q指针是否重复了。

重点:在p指针指到重复字符时还需要判断q指针是否在该字符上次出现位置的右边,还未进入第一个if循环时hash[]的值是该字符上次出现的位置,也就是说,如果q>hash[],那么该字符不算是重复字符,是子串中第一次出现。

        若出现重复那么把q提到p相同位置,已经找出一个局部最长字串了。

int lengthOfLongestSubstring(char * s)
{
    int count = 0;
    int p = 0,q = 0;
    int hash[256] = {0};
    int len = strlen(s);
    while(p<len)
        {
            if(hash[s[p]]!= 0 && hash[s[p]]>q)                
                {
                    q = hash[s[p]];
                    hash[s[p]] = p+1;
 
                }
            else 
                {
                    hash[s[p]] = p+1;
                }
                count = fmax(count,p-q+1);
                p++;

        }
return count;
}

法二、动态规划

        在思考后发现,每一次的最长字符串取值可以从右往左数直到找到重复字符记录下ans,那么从0下标到len下标,求出每个下标的ans,再取所有ans的最大值,就可以找到答案。

        再思考后发现,i下标的ans可以由i-1的ans求得,i-1的ans可以由i-2的ans求得......以此类推动态规划的解法也就浮出水面了。

        那么应该如何判断每个下标的ans呢?

        首先也是定义的数组arr[256],存放每个字符出现的位置,为1-256的字符赋-1的位置初值,这样第一次出现时i - arr[]就是间距了。

重点:取得上一次的ans有两种情况,在代码p1,p2处已经标注,取其最小值就是一个局部ans(谁离你近就要服从谁),再和当前最大的ans相比就取得全局ans。

int lengthOfLongestSubstring(char * s)
{
    int len = strlen(s);
    if(s == NULL||len == 0)
        return 0;

    int arr[256];
    
    for(int i = 0;i<256;i++)
        arr[i] = -1;                //初始化所有的第一次出现的位置为-1
        arr[s[0]] = 0;              //为第一个字符特意输入位置,为0,因为for循环从1开始会忽                                                                
                                    略第一个位置的字符位置
                                    //因此要记录它为0位置
    int ans = 1;
    int preans = 1;

    int p1;                         //两种情况       1.有重复的字符
    int p2;                         //              2.最远取到上一次的最左处加上自己

    for(int i = 1;i<len;i++)
    {
        p1 = i-arr[s[i]];
        p2 = preans+1;
        ans = fmax(ans,fmin(p1,p2));
        preans = fmin(p1,p2);
        arr[s[i]] = i;

    }

    return ans;
}

   

       题目比较简单,但是这两种解法都比较有意思值得思考,适合像我这样刚刚接触算法的小白。

       如有错误或者更妙的解法欢迎评论提出呀!

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值