python scipy.optimize least_squares实现最小二乘法

本文介绍了如何利用Python的scipy.optimize.least_squares函数进行最小二乘法估计,展示了从数据拟合到绘制模型函数的完整过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Least-squares minimization (least_squares)

The code below implements least-squares estimation of and finally plots the original data and the fitted model function:X

scipy.optimize.least_squares(fun, x0, jac=‘2-point’, bounds=(- inf, inf), method=‘trf’, ftol=1e-08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss=‘linear’, f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={})

# -*- coding: utf-8 -*-
"""
Created on Sat Dec  4 22:43:05 2021

@author: Machi
"""

from scipy.optimize import least_squares
import numpy as np
import matplotlib.pyplot as plt

def model(x, u):
    return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值