问题 1117: K-进制数

题目描述

考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0.

考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0.

例:
1010230 是有效的7位数
1000198 无效
0001235 不是7位数, 而是4位数.

给定两个数N和K, 要求计算包含N位数字的有效K-进制数的总数.

假设2 <= K <= 10; 2 <= N; 4 <= N+K <= 18.

输入

两个十进制整数N和K

输出

十进制表示的结果

样例输入

2
10

样例输出

90

解题思路:

  • 当N=1时.即只有一位数时,0不可取,可以去的数从:1,2,3,4···(K-1),所以总共可以取得:K-1个数。
  • 当N=2时.即有两位数时,开头不能取0(可以取得k-1个数),末尾可以取0了(取得k-1+1个数).所以总共可以取得:(k-1)(k-1+1) 个数
  • 当N=3时.即有三位数时,开头不能取0(可以取得k-1个数),根据N=2推出的式子,有(k-1)(k-1+1)个数,但是,在此基础上,因为当前时三位数,所以中间的可以取0(但是最后位也不能取0),所以又可以多取(k-1)位。所以总共可以取得:(k-1)[(k-1)(k-1+1)+(k-1)]个数

代码如下:

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;

int main(){

    int N,K;
    int res0,res1;
    while(scanf("%d%d",&N,&K)!=EOF){
        res1=K-1,res0=1;
        for(int i=2;i<=N;i++){
            int lastRes1=res1;
            res1=(K-1)*(res1+res0);
            res0=lastRes1;
        }
        //cout<<res1<<endl;
        printf("%d\n",res1);
    }
    //system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值