题目描述
考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0.
考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0.
例:
1010230 是有效的7位数
1000198 无效
0001235 不是7位数, 而是4位数.
给定两个数N和K, 要求计算包含N位数字的有效K-进制数的总数.
假设2 <= K <= 10; 2 <= N; 4 <= N+K <= 18.
输入
两个十进制整数N和K
输出
十进制表示的结果
样例输入
2
10
样例输出
90
解题思路:
- 当N=1时.即只有一位数时,0不可取,可以去的数从:1,2,3,4···(K-1),所以总共可以取得:K-1个数。
- 当N=2时.即有两位数时,开头不能取0(可以取得k-1个数),末尾可以取0了(取得k-1+1个数).所以总共可以取得:(k-1)(k-1+1) 个数
- 当N=3时.即有三位数时,开头不能取0(可以取得k-1个数),根据N=2推出的式子,有(k-1)(k-1+1)个数,但是,在此基础上,因为当前时三位数,所以中间的可以取0(但是最后位也不能取0),所以又可以多取(k-1)位。所以总共可以取得:(k-1)[(k-1)(k-1+1)+(k-1)]个数
代码如下:
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int main(){
int N,K;
int res0,res1;
while(scanf("%d%d",&N,&K)!=EOF){
res1=K-1,res0=1;
for(int i=2;i<=N;i++){
int lastRes1=res1;
res1=(K-1)*(res1+res0);
res0=lastRes1;
}
//cout<<res1<<endl;
printf("%d\n",res1);
}
//system("pause");
return 0;
}