运筹说 第81期 | 图与网络分析经典例题讲解

本文介绍了图与网络分析在经济管理中的具体应用,包括最小树问题(如城市轨道交通规划)、最短路问题(公路网络运输)、最大流问题(电力公司供电)和最小费用最大流问题(天然气运输),通过实际案例展示了Kruskal算法、霍夫曼树和Dijkstra/Ford-Fulkerson算法的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过前几期的学习,我们已经学会了图与网络分析的相关概念和基本方法的原理,并且掌握了图与网络分析相关模型的建立和具体的求解方法,本期小编带大家学习图与网络分析在经济管理中的应用

在实际工作中,我们能发现图与网络分析在经济管理中有着许多应用,本期小编选择了其中一些典型例子,包括最小树问题最短路问题最大流问题最小费用最大流,进行详细讲解。

01最小树问题

接下来我们先从经典的最小树问题开始讲起。

在现实生活中,最小生成树最优二叉树有很高的实用价值。正确地理解掌握如何构造连通图的最小生成树问题以及最优二叉树问题,将会给我们带来巨大的经济效益社会效益。随着最小生成树理论与算法的发展与完善,其在现实生活中的应用越来越广泛。本次小编选取了两道例题,包括经济学应用中具有代表性的最小投资问题以及数据通信问题,来为大家进行详细讲解。

例1、最小生成树问题

问题描述

发展轨道交通是解决城市内和城际间人员流动量大与交通设施运载力不足之间矛盾的主要途径,规划建设城际间快速轨道交通已经成为经济发展的迫切需要。某省份决定在包含9座城市的城市群内架设快速轨道交通干线,从最小投资角度出发,如何设计能连接城市群内所有城市的交通干线,并使得造价最低总道路长度最短

结合现实道路连通情况,对9座城市间交通道路图进行图论抽象,得到现实距离无向图如下图所示,不仅可以看到城市群所处的大致地理方位,亦可得知其间道路连通及其间距离的大致情况如下图所示。

问题解析

对于该城市群快速轨道交通干线问题,用小圆圈表示城市,用边表示城市之间联通道路,边上的权是用以表示两地间距离的公里数。网络的构成可采用点-点邻接关系来描述。边的权决定了路线选择的结果和最终轨道干线的投资。

利用第74期介绍的Kruskal算法对上图进行推算,最终可获得一条连通各城市、总路程最短(即投资最小)的交通干线,符合节约费用的原则。该算法的实质推论过程是:在无向图中,按照边的权值从小到大依次进行排序,从而获得边的权值递增序列,进而在图中依次递增序列选择边的集合。如果新选择的边与已经确认的边构成了回路(即首尾相连的环形边序列),则放弃该边,继续选择权递增的边序列中的下一条边,直到序列中的最后一条边。

问题求解

(1)首先选择权最小的边。从图中可知,DK,KL,GH的权均为55,从中任选一条均可。此处我们选择KL作为第一条边。

(2)接着再从除去边KL的其余边中选择权最小且不构成回路的第二条边。DK,GH权均为55,可从中任选一条。此处我们选择DK作为第二条边。

(3)选择HG作为第三条边。

(4)除去KL,DK,GH三条边后,可以继续选择权为60的边CU,UH和AB,它们均可满足权最小且不构成回路的条件。

(5)DL,GA的权均为65,如果选择边DL,那么DK,KL和DL将构成封闭的三角形回路,故舍弃边DL,选择边GA

(6)继续选择下一条边时也遇到构成回路的情况。边HA和GB的权为70,但如果选择它们必将产生回路,即:HG,GA,AH三角环回路或AG,AB,GB三角环回路。因此,不能选择此两边,必须选择不构成回路、但权稍大的其他边继续该算法。此处选择权为80的边AK

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值