前几期的推送已经讲解了存储论的基本知识、数学模型和相关算法,相信大家对存储论已经有了充分的了解,这期小编将带大家一起来读一篇多级库存优化工业应用的保障服务模型的扩展的文章。
1.文章信息
题目:Extensions to the Guaranteed Service Model for Industrial
Applications of Multi-Echelon Inventory Optimization
作者:Victoria G. Achkara, Braulio B. Brunaud, Héctor D. Pérez, Rami Musa.
Carlos A. Méndez, Ignacio E. Grossmann
来源:European Journal of Operational Research
出版信息:Volume 313, Issue 1, 16 February 2024, Pages 192-206
网址:Redirecting
2.文章导读
在当今以客户为中心的供应链环境中,确保按时满足客户需求至关重要。然而,客户需求的不确定性、交货时间的可变性以及供应链各阶段决策之间的相互影响,共同构成了库存控制的重大挑战。为了减轻这些不确定性带来的缺货风险,合理确定安全库存水平显得尤为重要。尽管已有研究采用MEIO模型来解决供应链中的安全库存分配问题,考虑了工业实践中的诸多问题和特征,但现有模型仍未能全面兼顾成本、所有典型的不确定性特征,以及在复杂供应链环境中实现最佳安全库存的需求。因此,本文提出了一种创新的广义MEIO模型,该模型基于保证服务方法,旨在以最低的持有成本在整个供应链网络中分配安全库存水平。特别地,该模型以制药供应链为背景,综合了制药多级供应链中的常见特征与新特征,如审查周期、制造设施、混合节点(即同时满足内部和外部需求的节点)、最小订货量(MOQ)以及不同的服务水平绩效指标(如填充率和周期服务水平)。为实现这一目标,本文重新调整了填充率约束,纳入了混合节点的考量,并提出使用二次回归来估计模型中所需填充率时的等效循环服务水平(CSL)。此外,模型还明确建模了补货订单的最小订货量(MOQ)。最终,通过利用基础模型的约束结构,本文将所得的非凸非线性规划(NLP)模型重新表述为二次约束问题(QCP),并通过算例展示了所提出模型的应用及其在计算性能上的显著提升。
3、重难点与解决方案分析
难点1:多级库存优化(MEIO)模型的复杂性。如何将供应链的多个特征在模型中进行表示。
文章基于GSM(Guaranteed Service Model)方法,将审核周期、制造设施、混合节点(既有内部需求也有外部需求的节点)、最小订购量(MOQ)和服务水平性能指标等多个特征整合到一个统一的模型框架中,通过构建一个混合整数非线性规划(MINLP)模型,结合了整数变量和连续变量的非线性优化问题,使得模型能够同时处理离散决策和连续决策,这包括了对审核周期和MOQ等特征的处理。
难点2:非线性和非凸问题的求解效率。模型涉及非线性规划(NLP),在处理大规模问题时计算效率低下,在求解上具有挑战性。
文章首先采用了多项式回归来近似填率与安全库存水平之间的关系,从而简化了模型中的复杂非线性函数,提高了模型的求解效率。然后将非线性规划(NLP)模型重构为二次约束规划(QCP)模型,利用QCP求解器有效处理模型中的非凸特性,显著提高了计算效率。
4.摘要
在多级库存优化(MEIO)中,有两种众所周知的方法来确定安全库存水平:随机服务模型和保证服务模型(GSM),本文研究的是基于保证服务方法的多级发散网络安全库存最优分配的优化模型。目的是在复杂供应链上实现最佳安全库存,同时集成本工作中呈现的工业环境的所有典型特征,例如最小起订量、混合节点和确定安全库存水平的替代服务水平措施,这也是本文的创新之处。本文首先提出一个保证服务模型(MNL),它是一个目标函数为凹的非凸NLP,非凸NLP问题对于中等或大规模的问题,找到全局最优所需的计算时间很长。为了提高模型效率,将MNL重新表述为二次约束问题(QCP),记为MQC。本文是第一个引入QCP重构来提高优化计算效率的模型。QCP通过允许使用QCP求解器来优于NLP公式,实现了计算时间的以数量级的程度减少。以制药行业作为实例进行了验证,对于大中型问题,可以用较小的计算费用找到最优解。仿真结果表明,该模型对实现目标服务水平是有效的。
5.主要内容
5.1问题描述
本文的库存策略假设为(R,S),并将基本的保证服务模型(GSM)拓展至具备最小订单数量、多级网络和混合节点等特征。研究对象一个固定设计的供应链,供应链中的材料p∈P,这些材料可以是原材料,也可以是成品。位置j∈J表示一组工厂、配送中心和零售商,可以存放不同的物料。库存成本发生在所有节点,并给出了它们的单位成本。文章假定需求和交货时间是不确定的。研究的目标是确定每个地点每种材料的保证服务时间,从而确定每个地点应保持多少安全库存,以最小化总持有成本并满足指定的客户服务水平。本文的模型解释见下节。
5.2模型解释
我们假设外部需求是正态分布的,总平均需求为平均需求之和,如式(1)所示,总需求标准差计算如式(2)所示。第一组约束与限定保证服务时间变量有关。式(3)定义了网络 𝐽0 中起始(源)节点的第一次入站服务时间,其中 𝑠𝑖0 为给定输入。式(4)将入站保证服务时间
与其上游节点
的保证服务时间联系起来。如果节点上的任何材料存在最大可接受延迟,则式(5)中的不等式有效。此外,式(6)固定了外部需求节点的最大可接受服务时间 𝑆𝐸𝑗𝑝 。此服务时间不影响下游节点的入站服务时间,因为它涉及仅供外部客户使用的安全库存。例如,如果在原材料 𝑞1 在节点 𝑗 用于成品 𝑝1 和 𝑝2 的生产则该原材料的需求均值为
,并且标准差为
。在每个节点上,我们定义一个安全库存来满足下游订单,另一个安全库存来满足外部订单。外部需求称为“需求节点”,其安全库存可计算为(7),式(8)为预测预期库存,每个节点的安全库存为二者之和,即
。不等式(9)和(10)分别解释了安全库存所覆盖的净交货时间的定义,以达到独立客户和非独立客户所需的服务水平。注意(9)和式(10)的右边必须是正的。为此,用不等式(11)和(12)定义上界
和
。前者只定义了依赖需求情况下的上界,而后者考虑了独立需求情况下的上界。GSM在设置安全库存时使用周期服务水平(CSL)作为客户服务绩效指标,本文将填充率(
)与安全系数
联系起来得到CSL,填充率表示从库存中按时满足需求的部分,目标是找到能够满足定义的填充率的最低CSL水平,如式(13)。目标函数是最小化安全库存成本,如式(14)所示,其中
是表示每种材料 𝑝 在每个位置 𝑗 的持有成本的系数。
以上公式给出的保证服务模型(MNL1)是一个目标函数为凹的非凸NLP,非凸NLP问题原则上可以用像BARON这样的全局优化求解器来解决。然而,对于中等或大规模的问题规模,找到全局最优所需的计算时间可能非常昂贵。为了提高模型的可追溯性和效率,我们使用二次回归找到方程(13)的近似值,得到模型MNL2。方程(13)提出了一个需要克服的困难。函数 𝑔(𝑥)=𝑥[1−𝐹𝑠(𝑥)]−𝑓𝑠(𝑥) 需要包含在数学模型中。为了简化这个函数,我们提出了一个代理模型,通过二阶多项式回归( ℎ(𝑥)=𝑎𝑥2+𝑏𝑥+𝑐 )来生成(15)中 𝑔(𝑥) 的近似值,使用变量 𝐾𝑉𝑗𝑝 可以取的值作为域。非线性规划(MNL2)模型是由式(3)-(6)、(9)-(12)、(14)-(15)组成的非线性规划。
为了提高优化效率,我们提出将NLP模型(MNL2)重新表述为二次约束问题(MQC),首先定义了一个新的变量Z来取代问题中的所有平方根项,将目标函数(14)表述为(16)。不等式(9)和式(10)通过用变量 𝑍1𝑗𝑝 和 𝑍2𝑗𝑝 替换左边的项,得到式(17)和式(18)。最后,填充率约束可以精确地重新表述为二次约束,将式(15)替换为式(19)和式(20)。因此,MQC可以用约束条件(3)-(6)、(11)-(12)、(17)-(20)重新表述。
5.3敏感性分析
在假设的供应链网络中,我们关注的是从两种原材料( 𝑅𝑎𝑤1 和 𝑅𝑎𝑤2 )生产成品( 𝑆𝐾𝑈1 )的过程,以及该成品通过工厂分销给三家零售商以满足外部需求的流程。工厂的生产周期为2周,这一点通过工厂上方的循环图示得以体现。在工厂层面,我们假设了一个特定的决策情境:工厂不持有安全库存,而是选择保证向零售商提供为期2周的供应。这一决策导致了总持有成本为162,205美元的结果。接下来,我们探讨 𝑆𝐾𝑈1 在工厂的保证服务时间对零售商安全库存水平的影响。由于工厂的保证服务时间是零售商的入站服务时间,零售商需要额外覆盖2周的库存量。因此,如果这一入站服务时间持续延长,零售商所需的安全库存量也会相应增加。最后,我们提出了一个可能的优化策略:面对不断增长的零售商安全库存需求,模型可能会考虑改变工厂的安全库存设置。通过这样做,可以利用全系统的风险分担机制,在供应链中寻求成本降低的机会。
图1 说明性示例表示
以上的基准情况称为情况(A),情况(B)在(A)的基础上将生产交货期增加到10周,该情形的最优解决方案是在工厂集中持有产成品库存,总持有成本为259,250美元。情况(C)在B的基础上将 𝑆𝐾𝑈1 的安全库存降为0,与(B)中的解决方案相比,总成本增加到265,360美元,因为错过了为零售商集合和减少入站服务时间的机会。
图2(A)2周的生产交货期 (B)10周的生产交货期 (C)在没有SKU1安全库存约束的情况下的10周的交货期
此外,本文还探究了最小起订量对安全库存水平的影响,通过对零售商1的 𝑆𝐾𝑈1 加上了填充率和最小起订量的约束,得到了不同情况下的CSL目标和安全库存。蓝线表示期望填充率,除了第一种情况外,其他情况下都是给定的输入,第一种情况下CSL定义为设置安全库存作为原始示例,这种情况下的填充率由式(19)获得。在以下场景中,目标是给定的填充率(98%,90%,80%和70%),CSL由模型获得。黄色虚线表示每种情况下的结果CSL,黄色条表示该覆盖范围的相应安全库存(次级垂直轴)。此外,棕色虚线和棕色条表示最小起订量=500,000时的最终CSL和安全库存。第一种情况(最左边的情况)是当前的说明性示例场景。期望的CSL是97%,并且期望接近100%的填充率,无论是否要求最小起订量。第二种情况设置98%的填充率来定义安全库存水平。达到这一预期填充率所需的最低CSL与其相应的安全库存水平一起减少,当需要较大的最小起订量时,减少幅度更大。在随后的场景中,期望的填充率降低,因此CSL更低。因此,最低订购量的批量越大,对安全库存的需求就越少。最小起订量代表了运输和生产限制,这些限制在供应链的几乎所有层次中都经常发现。将此特性与最常用的服务水平度量(填充率)相结合,可以显著节省安全库存水平,甚至在最大起订量的情况下消除安全库存水平。
图3 填充率和最小起订量对CSL和安全库存水平的影响
5.4工业案例研究
(1)小型案例
为了验证模型的计算效率,本文设置了不同类型的案例进行了验证。小型案例设置了1个工厂和3个零售商,有4个sku和31种来自不同地点的原材料,以及一种中间产品。MQC模型有248个连续变量和291个约束,在0.03秒内找到最优解,最优解是762,503美元。将结果与商业软件进行比较,并将当前原材料(RM)和成品(FG)的安全库存水平总结在表3中。商业软件的解决方案在当前安全库存水平上降低了10%的持有成本,本工作中提出的模型降低了17%,清楚地显示了该工具在减少库存资本方面的优势。
表1 小型工业安全库存水平和持有成本
(2)中型案例
中型案例的供应链网络与以上案例相同,包括20种成品和120种原材料,需要196个安全库存决策。QCP模型的大小为1973个约束和1427个连续变量,并使用Gurobi作为QCP求解器在3秒内求解出最优性。以上案例体现了本文提出的模型的计算效率,计算时间大大减少。
5.5仿真验证
为了验证模型的精确度,本文进行了仿真验证。下图为以CSL为目标和填充率为目标的两种情况下,不同变异系数(CV)时,模拟得到的平均有效服务水平(橙色线)与理想结果(灰色线)的差异。当cv接近1时,CSL的估计精度略低,最大差值为0.02,当cv较低时,估计效果较好,一般cv低于0.66。在填充率的情况下,只有少数值与CV 0.96的期望值相差0.01或0.02点。通过这些模拟可以看到,通常,服务水平与模型提出的安全库存水平是一致的,最大差异为0.02。证明了本文提出的模型精确度较高。
图4 针对不同目标和CV获得的预期与有效服务水平
6.结论
本文提出了一个基于保证服务方法的多级供应链安全库存优化模型,这是首个将多个典型工业实践特征结合在一起的模型,也是首个引入QCP重构以提高优化计算效率的模型。研究通过实际验证,以制药行业供应链为例,证明了拓展的保证服务模型(GSM)的有效性。在模型计算效率方面,通过小型和中型工业案例进行了实际计算,结果显示对于大中型问题,模型能够在3秒内求解出最优解,验证了其计算效率。模型准确率方面,仿真结果表明,模拟得到的平均有效服务水平与理想结果的最大差异仅为0.02,证明了该模型对实现目标服务水平的有效性。研究还将模型结果与商业软件进行了比较,发现该模型不仅能够获得精确的全局解,而且能够提高求解效率。特别是对于存在混合节点等特殊需求的情况,商业软件则无法提供相应功能。减少计算时间对公司来说非常重要,因为他们目前在使用商业软件解决问题时需要几天时间才能运行完毕。此外,研究结果还为将算法开发为开源提供了机会,而不仅仅将其隐藏在专有软件包中,这对于业界具有重要价值。
7.贡献
1、本文扩展了GSM模型,传统的GSM模型假设需求是独立的、同分布的,服从正态分布。交货期是恒定的,独立需求只发生在网络的最终节点上。本文考虑了混合节点,并包含不同类型需求的差异化服务时间,更贴近实际的供应链。
2、本文将新的(例如混合节点)和现有的特征(例如随机交货时间、审查周期、填充率)结合到一个模型中。
3、GSM在设置安全库存时使用周期服务水平(CSL)作为客户服务绩效指标。由于填充率在工业中使用更广泛,我们扩展了GSM,允许根据需要指定填充率。填充率表示从库存中按时满足需求的部分。本文将填充率和安全系数作为服务水平衡量标准,目标是找到能够满足定义的填充率的最低CSL水平。
4、本文将NLP问题的精确重新表述引入QCP,从而将计算效率提高了几个数量级。这种重新表述相当于原来的NLP问题,产生了同样的最优解,从而保证了解的质量。
8.展望
在未来的研究中,可以考虑非正常需求的情况,扩展目前的公式,并对输入数据进行预处理,以便决定哪种数学公式适合于最佳地确定安全库存水平。此外,也可以分析CV和MOQ对CSL估计的影响,以审查其他潜在的安全库存减少。也可以在研究中将响应特性、存储容量限制以及节点上的受限容量纳入考虑范围,以解释供应链中断。
作者 | 张宇 邱宇
责编 | 唐京茹
审核 | 徐小峰