一、技术要点
1. 多模态数据特性分析
异构数据对齐:需处理不同传感器(如雷达、摄像头、IMU、ADS-B等)在时间、空间、精度和采样率上的差异,需设计同步机制(如硬件时钟同步、软件插值对齐)。
数据预处理:噪声抑制(如卡尔曼滤波)、特征提取(如CNN处理图像、点云分割处理雷达数据)及数据标准化(归一化、降维)。
2. 融合架构设计
层级选择:
数据级融合(低延迟但计算量大,如原始点云与图像融合);
特征级融合(平衡效率与信息量,如目标特征拼接);
决策级融合(高容错性,如多算法投票)。
混合架构:动态选择融合层级(如紧急情况下优先数据级融合以降低延迟)。
模型选择:深度学习(Transformer、图神经网络)与传统方法(贝叶斯网络、D-S证据理论)结合。
3. 异构计算平台适配
资源优化:轻量化模型(MobileNet、知识蒸馏)、硬件加速(GPU/FPGA异构计算)、实时操作系统(如ARINC 653分区调度)。
动态负载均衡:根据任务优先级动态分配计算资源(如飞行控制优先于数据融合)。
4.鲁棒性与容错机制
冗余设计:多传感器互为备份(如GPS失效时依赖视觉/惯性导航)。
故障检测与恢复:基于一致性检验(如残差分析)或置信度评估(如概率融合)。
抗干扰能力:对抗环境干扰(如电磁干扰、恶劣天气)的鲁棒算法(如对抗训练)。
二、技术难点
1.时空同步与校准
高精度时间同步:需亚毫秒级同步(如PTP协议),动态环境下的时钟漂移补偿。
空间标定:多传感器坐标系的动态校准(如飞行器振动导致的位移误差)。
2. 数据异构性与语义鸿沟
跨模态关联:非结构化数据(图像)与结构化数据(导航参数)的语义对齐(如目标ID跨模态匹配)。
数据缺失处理:部分模态失效时的推理补全(如生成式模型填补缺失雷达数据)。
3. 实时性与资源约束
低延迟要求:端到端延迟需满足航电系统硬实时需求(如<100ms)。
计算-功耗权衡:嵌入式平台(如机载计算机)的算力与功耗限制下的算法优化。
4. 可解释性与安全性
可信决策:融合结果需符合航空安全标准(如DO-178C),需可追溯的决策逻辑(如注意力机制可视化)。
抗攻击性:防止传感器欺骗(如GPS欺骗)与数据注入攻击(如对抗样本防御)。
5. 标准化与验证挑战
接口标准化:兼容多种传感器协议(如MIL-STD-1553、ARINC 429)。
复杂场景验证:构建极端条件测试集(如强电磁干扰、密集目标场景),覆盖长尾问题。
三、解决方案趋势
1. 自适应融合算法:基于强化学习动态调整融合策略。
2. 边缘-云协同:部分计算卸载至云端,兼顾实时性与大数据分析。
3. 数字孪生验证:通过高保真仿真环境(如X-Plane)加速测试迭代。
4. 类脑计算:借鉴神经科学设计脉冲神经网络(SNN),提升能效比。