题目描述
给你N个数组组成的数列,位置编号从1到N,每个位置上的数字为1~N,且没有重复。
现在你可以选择从任意一个数字A开始,到其右侧任意数字B,可以翻转数字A到数字B之间的所有数字。
翻转区间内,第一个数和最后一个数交换,第二个数和倒数第二个数交换……
要求一次翻转后数字和位置对应的情况尽可能多。
所谓数字和位置对应,就是第x位置上的数值恰好是x。
输入
第一行一个整数N,表示有多少个数字。
第二行N个整数,表示N的一个排列,两个整数间用一个空格分隔。
输出
输出两个整数A和B,中间用一个空格分隔。A和B在序列中先后出现。如果有多组答案,输出任意一种。
样例输入
4 3 2 1 4 2 1 2 7 3 6 5 7 4 1 2
样例输出
3 1 1 1 3 2
提示
【样例1解释】
数字3到数字1之间的数翻转,每个数都和位置编号对应
【样例2解释】
任意单个数区间翻转
【样例3解释】
整个区间翻转
【数据范围】
30%数据,N<=500
60%数据,N<=5000
100%数据,N<=500000
很容易看出来,位置为i,值为a[i]的数要到a[i]旋转轴为(i+a[i])/2;
就可以知道每条旋转轴,围绕着其旋转后的符合答案的个数
(设区间为l,r,答案为l-r中翻转后符合答案的个数+s[l-1]+s[n]-s[r]//s[i]表示不旋转就符合条件的数的个数)
这样是n*n的复杂度
但是(i,j)(a[i]!=j&&a[j]!=i)产生的答案小于等于(i+1,j-1)
等于不难理解,小于就是a[i]==i||a[j]==j的情况
所以对于每条对称轴,只用枚举翻转后符合a[左端点]==左端点或者a[右端点]==右端点的左端点
快排以后线扫统计一下
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
int read()
{
int ret=0;
char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9')
ret=(ret<<1)+(ret<<3)+ch-'0',
ch=getchar();
return ret;
}
int n,num,l,r,ans;
const int N=1e6+5;
int s[N],b[N];
struct NA{
int x,z;
}a[N];
bool cmp(NA i,NA j)
{
return i.z<j.z||i.z==j.z&&i.x>j.x;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
int x=read();
b[i]=x;
s[i]=(x==i)?s[i-1]+1:s[i-1];
a[i].x=min(x,i);
a[i].z=i+x;
}
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
num=l=r=ans=0;
for(int i=1;i<=n;i++)
if(i==1||a[i].z==a[i-1].z)
{
num++;
int t=num+s[a[i].x-1]+s[n]-s[a[i].z-a[i].x];
if(ans<t)
ans=t,l=a[i].x,r=a[i].z-a[i].x;
} else
{
num=1;
int t=num+s[a[i].x-1]+s[n]-s[a[i].z-a[i].x];
if(ans<t)
ans=t,l=a[i].x,r=a[i].z-a[i].x;
}
printf("%d %d\n",b[l],b[r]);
return 0;
}