翻转数列

题目描述

给你N个数组组成的数列,位置编号从1到N,每个位置上的数字为1~N,且没有重复。

现在你可以选择从任意一个数字A开始,到其右侧任意数字B,可以翻转数字A到数字B之间的所有数字。

翻转区间内,第一个数和最后一个数交换,第二个数和倒数第二个数交换……

要求一次翻转后数字和位置对应的情况尽可能多。

所谓数字和位置对应,就是第x位置上的数值恰好是x。

 

输入

第一行一个整数N,表示有多少个数字。

第二行N个整数,表示N的一个排列,两个整数间用一个空格分隔。

 

输出

输出两个整数A和B,中间用一个空格分隔。A和B在序列中先后出现。如果有多组答案,输出任意一种。

 

样例输入

4 3​ ​2​ ​1​ ​4 2 1 2 7 3​ ​6​ ​5​ ​7​ ​4​ ​1​ ​2

样例输出

3 1 1 1 3 2

提示

 

【样例1解释】

 

数字3到数字1之间的数翻转,每个数都和位置编号对应

 

【样例2解释】

 

任意单个数区间翻转

 

【样例3解释】

 

整个区间翻转

 

【数据范围】

 

30%数据,N<=500

 

60%数据,N<=5000

 

100%数据,N<=500000

 

很容易看出来,位置为i,值为a[i]的数要到a[i]旋转轴为(i+a[i])/2;

就可以知道每条旋转轴,围绕着其旋转后的符合答案的个数

(设区间为l,r,答案为l-r中翻转后符合答案的个数+s[l-1]+s[n]-s[r]//s[i]表示不旋转就符合条件的数的个数)

这样是n*n的复杂度

但是(i,j)(a[i]!=j&&a[j]!=i)产生的答案小于等于(i+1,j-1)

等于不难理解,小于就是a[i]==i||a[j]==j的情况

所以对于每条对称轴,只用枚举翻转后符合a[左端点]==左端点或者a[右端点]==右端点的左端点

快排以后线扫统计一下

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
int read()
{
	int ret=0;
	char ch=getchar();
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9')
		ret=(ret<<1)+(ret<<3)+ch-'0',
		ch=getchar();
	return ret;
}

int n,num,l,r,ans;
const int N=1e6+5;
int s[N],b[N];
struct NA{
	int x,z;
}a[N];

bool cmp(NA i,NA j)
{
	return i.z<j.z||i.z==j.z&&i.x>j.x;
}
int main()
{
	n=read();
	for(int i=1;i<=n;i++)
	{
		int x=read();
		b[i]=x;
		s[i]=(x==i)?s[i-1]+1:s[i-1];
		a[i].x=min(x,i);
		a[i].z=i+x;
	}
	sort(a+1,a+n+1,cmp);
	for(int i=1;i<=n;i++)
	num=l=r=ans=0;
	for(int i=1;i<=n;i++)
		if(i==1||a[i].z==a[i-1].z)
		{
			num++; 
			int t=num+s[a[i].x-1]+s[n]-s[a[i].z-a[i].x];
			if(ans<t)
				ans=t,l=a[i].x,r=a[i].z-a[i].x;
		} else 
		{
			num=1;
			int t=num+s[a[i].x-1]+s[n]-s[a[i].z-a[i].x];
			if(ans<t)
				ans=t,l=a[i].x,r=a[i].z-a[i].x;
		}
	printf("%d %d\n",b[l],b[r]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值