https://www.luogu.org/problemnew/solution/P3370
作者: 远航之曲 更新时间: 2017-08-07 09:25 在Ta的博客查看 17
据我的理解,Hash就是一个像函数一样的东西,你放进去一个值,它给你输出来一个值。输出的值就是Hash值。一般Hash值会比原来的值更好储存(更小)或比较。
那字符串Hash就非常好理解了。就是把字符串转换成一个整数的函数。而且要尽量做到使字符串对应唯一的Hash值。
字符串Hash的种类还是有很多种的,不过在信息学竞赛中只会用到一种名为“BKDR Hash”的字符串Hash算法。
它的主要思路是选取恰当的进制,可以把字符串中的字符看成一个大数字中的每一位数字,不过比较字符串和比较大数字的复杂度并没有什么区别(高精数的比较也是O(n)O(n)的),但只要把它对一个数取模,然后认为取模后的结果相等原数就相等,那么就可以在一定的错误率的基础上O(1)O(1)进行判断了。
那么我们选择什么进制比较好?
首先不要把任意字符对应到数字0,比如假如把a对应到数字0,那么将不能只从Hash结果上区分ab和b(虽然可以额外判断字符串长度,但不把任意字符对应到数字0更加省事且没有任何副作用),一般而言,把a-z对应到数字1-26比较合适。
关于进制的选择实际上非常自由,大于所有字符对应的数字的最大值,不要含有模数的质因子(那还模什么),比如一个字符集是a到z的题目,选择27、233、19260817 都是可以的。
模数的选择(尽量还是要选择质数):
绝大多数情况下,不要选择一个10^9109级别的数,因为这样随机数据都会有Hash冲突,根据生日悖论,随便找上\sqrt{10^9}109个串就有大概率出现至少一对Hash 值相等的串(参见BZOJ 3098 Hash Killer II)。
最稳妥的办法是选择两个10^9109级别的质数,只有模这两个数都相等才判断相等,但常数略大,代码相对难写,目前暂时没有办法卡掉这种写法(除了卡时间让它超时)(参见BZOJ 3099 Hash Killer III)。
如果能背过或在考场上找出一个10^181018级别的质数(Miller-Rabin),也相对靠谱,主要用于前一种担心会超时,后一种担心被卡。
偷懒的写法就是直接使用unsigned long long,不手动进行取模,它溢出时会自动对2^64264进行取模,如果出题人比较良心,这种做法也不会被卡,但这个是完全可以卡的,卡的方法参见BZOJ 3097 Hash Killer I。
下面是代码
这是自然溢出hash(100)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
ull base=131;
ull a[10010];
char s[10010];
int n,ans=1;
ull hashs(char s[])
{
int len=strlen(s);
ull ans=0;
for (int i=0;i<len;i++)
ans=ans*base+(ull)s[i];
return ans&0x7fffffff;
}
main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%s",s);
a[i]=hashs(s);
}
sort(a+1,a+n+1);
for (int i=2;i<=n;i++)
if (a[i]!=a[i-1])
ans++;
printf("%d\n",ans);
}
这是单模数hash(80)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
ull base=131;
ull a[10010];
char s[10010];
int n,ans=1;
ull mod=19260817;
ull hashs(char s[])
{
int len=strlen(s);
ull ans=0;
for (int i=0;i<len;i++)
ans=(ans*base+(ull)s[i])%mod;
return ans;
}
main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%s",s);
a[i]=hashs(s);
}
sort(a+1,a+n+1);
for (int i=2;i<=n;i++)
if (a[i]!=a[i-1])
ans++;
printf("%d\n",ans);
}
这是双hash(100)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
ull base=131;
struct data
{
ull x,y;
}a[10010];
char s[10010];
int n,ans=1;
ull mod1=19260817;
ull mod2=19660813;
ull hash1(char s[])
{
int len=strlen(s);
ull ans=0;
for (int i=0;i<len;i++)
ans=(ans*base+(ull)s[i])%mod1;
return ans;
}
ull hash2(char s[])
{
int len=strlen(s);
ull ans=0;
for (int i=0;i<len;i++)
ans=(ans*base+(ull)s[i])%mod2;
return ans;
}
bool comp(data a,data b)
{
return a.x<b.x;
}
main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%s",s);
a[i].x=hash1(s);
a[i].y=hash2(s);
}
sort(a+1,a+n+1,comp);
for (int i=2;i<=n;i++)
if (a[i].x!=a[i-1].x || a[i-1].y!=a[i].y)
ans++;
printf("%d\n",ans);
}
这是只用一个10^18质数的hash(100)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
ull base=131;
ull a[10010];
char s[10010];
int n,ans=1;
ull mod=212370440130137957ll;//是质数!!
ull hashs(char s[])
{
int len=strlen(s);
ull ans=0;
for (int i=0;i<len;i++)
ans=(ans*base+(ull)s[i])%mod;
return ans;
}
main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%s",s);
a[i]=hashs(s);
}
sort(a+1,a+n+1);
for (int i=2;i<=n;i++)
if (a[i]!=a[i-1])
ans++;
printf("%d\n",ans);
}
这是篇我看过最好的题解
ORZ大神
弱弱地贴上自己的代码
#include<cstdio>
#include<map>
#include<cstring>
#define ll long long
const int p1=1e9+7,p2=6662333;
using namespace std;
const int N=1e5+5;
map<pair<int,int>,bool>mp;
char s[N];
int n,ans;
int main()
{
scanf("%d",&n);
ans=0;
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
ll a1=0,a2=0;
for(int j=1;j<=strlen(s+1);j++)
a1=(a1*1000+s[j])%p1,a2=(a2*1000+s[j])%p2;
if(!mp[make_pair(a1,a2)])
mp[make_pair(a1,a2)]=1,ans++;
}
printf("%d\n",ans);
return 0;
}