https://www.luogu.org/problemnew/show/P1970
题目描述
花匠栋栋种了一排花,每株花都有自己的高度。花儿越长越大,也越来越挤。栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致。
具体而言,栋栋的花的高度可以看成一列整数h_1,h_2,...,h_nh1,h2,...,hn。设当一部分花被移走后,剩下的花的高度依次为g_1,g_2,...,g_mg1,g2,...,gm,则栋栋希望下面两个条件中至少有一个满足:
条件 AA:对于所有g_{2i}>g_{2i-1},g_{2i}>g_{2i+1}g2i>g2i−1,g2i>g2i+1
条件 BB:对于所有g_{2i}<g_{2i-1},g_{2i}<g_{2i+1}g2i<g2i−1,g2i<g2i+1
注意上面两个条件在m=1m=1时同时满足,当m > 1m>1时最多有一个能满足。
请问,栋栋最多能将多少株花留在原地。
输入输出格式
输入格式:
第一行包含一个整数nn,表示开始时花的株数。
第二行包含nn个整数,依次为h_1,h_2,...,h_nh1,h2,...,hn,表示每株花的高度。
输出格式:
一个整数mm,表示最多能留在原地的花的株数。
输入输出样例
输入样例#1: 复制
5 5 3 2 1 2
输出样例#1: 复制
3
说明
【输入输出样例说明】
有多种方法可以正好保留 33 株花,例如,留下第 11、44、55 株,高度分别为 55、11、22,满足条件 B。
【数据范围】
对于 20\%20%的数据,n ≤ 10n≤10;
对于 30\%30%的数据,n ≤ 25n≤25;
对于 70\%70%的数据,n ≤ 1000,0 ≤ h_i≤ 1000n≤1000,0≤hi≤1000;
对于 100\%100%的数据,1 ≤ n ≤ 100,000,0 ≤ h_i≤ 1,000,0001≤n≤100,000,0≤hi≤1,000,000,所有的h_ihi随机生成,所有随机数服从某区间内的均匀分布。
据说可以贪心,但是菜鸡我只会动态规划+树状数组优化
状态与最长公共子序列相似
#include<cstdio>
#include<iostream>
using namespace std;
int read()
{
int ret=0;
char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9')
ret=(ret<<1)+(ret<<3)+ch-'0',
ch=getchar();
return ret;
}
const int N=1e6+5;
int n,m,a[N],c[N][2],f[N][2],ans;
inline int getsum(int x,int bj)
{
int ret=0;
if(bj)
for(int i=x;i;i-=i&-i) ret=max(c[i][bj],ret);
else for(int i=x;i<=m;i+=i&-i) ret=max(c[i][bj],ret);
return ret;
}
inline void add(int x,int k,int bj)
{
if(bj)
for(int i=x;i<=m;i+=i&-i) c[i][bj]=max(c[i][bj],k);
else for(int i=x;i;i-=i&-i) c[i][bj]=max(c[i][bj],k);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
a[i]=read()+1;
m=max(m,a[i]);
}
for(int i=1;i<=n;i++)
{
f[a[i]][0]=getsum(a[i]-1,1)+1;
f[a[i]][1]=getsum(a[i]+1,0)+1;
add(a[i],f[a[i]][0],0);
add(a[i],f[a[i]][1],1);
ans=max(ans,max(f[a[i]][0],f[a[i]][1]));
}
printf("%d\n",ans);
return 0;
}