二分查找法

文章介绍了二分查找法的概念,适用于有序数组,通过找到数组中点并比较目标值来提高查找效率。详细阐述了二分查找的关键步骤,包括确定left、right和mid,以及根据比较结果调整left和right的值。文章提供了一个C语言实现二分查找法的示例代码。

二分查找法

适用于有序数组,顺序查找绝大多数情况有效但是由于它是一个一个元素进行查找,其效率很低,只有一个for循环

二分查找的关键:

找到最左边元素(left)和最右边元素(right),确定中间元素(mid)

int r = 0;
	scanf("%d", &r);
	int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
	int sz = sizeof(arr) / sizeof (arr[0]);
	int left = 0;
	int right = sz-1;

比较中间元素(mid)和目标元素(r)的大小,调整left和right,再确定新的mid…
接下来的问题在于怎样调整left和right的值,mid和k比较无非就三种情况:mid<r,mid>r,mid=r。第一种情况,r在mid的右边,我们将left调整为mid+1,right不用调整;第二种情况,r在mid的左边,我们将right调整为mid-1,left不用调整。最后一种情况最简单,我们已经找到了r,直接将mid打印出来就行了

int mid = (left + right) / 2;
		if (arr[mid] > r)
		{
			right = mid - 1;
		}
		else if (arr[mid] < r)
		{
			left = mid + 1;
		}
		else
		{
			printf("找到了,它是:%d", arr[a]);
			break;
		}

我们要不断确定mid直到找到r,自然需要用到循环,我们有明确的目标:找到k。因此选择while循环,找到k后循环不再进行,而当left和right之间还有元素,即left在right的左边或与之重合,k就依然可能存在,所以循环条件为left<=right,

while (left <= right)
{
}

完整代码如下:

二分查找法演示

#include <stdio.h>


int main()
{
	int r = 0;
	scanf("%d", &r);
	int arr[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int left = 0;
	int right = sz - 1;
	while (left <= right)
	{
		int mid = (left + right) / 2;
		if (arr[mid] > r)
		{
			right = mid - 1;
		}
		else if (arr[mid] < r)
		{
			left = mid + 1;
		}
		else
		{
			printf("找到了,它是:%d", arr[mid]);
			break;
		}
	}
	return 0;

}
}

【源码免费下载链接】:https://renmaiwang.cn/s/mgvj5 Ackley函数,作为优化算法测试领域的一个重要工具,它的设计初衷是为了评估和比较不同优化算法在处理复杂优化问题时的能力。这个函数具有多模态、非线性、非凸等特性,使得它成为检验全局搜索性能的理想选择。下面将详细探讨Ackley函数的定义、特点以及其在优化算法测试中的应用。Ackley函数由Dennis B. Ackley于1972年提出,其数学表达式如下:\[ f(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_i)\right) + 20 + e \]其中,\( n \) 是输入向量的维度,\( x_i \) 是输入向量的第\( i \)个元素,\( e \)是自然对数的底数(约等于2.718)。函数的目标是找到使该函数值最小化的\( x \)值。注意,此函数在全局最小值为0的位置处有多个局部极小值,这些极小值通常分布在整个定义域内,增加了求解的难度。 Ackley函数的主要特点如下:1. **多模态**:函数中包含了多个局部最小值,这模拟了实际问题中可能出现的复杂地形。2. **非线性**:函数的形状依赖于输入变量的平方和及余弦函数,这使得问题无法通过简单的线性操作解决。3. **非凸**:函数的等值线不是简单的圆形或椭圆形,而是呈现出复杂的曲面结构,进一步增加了优化的挑战。4. **全局最优解**:尽管存在多个局部最小值,但 Ackley 函数有一个全局最小值,即所有\( x_i = 0 \),函数值为0。在优化算法测试中,Ackley函数常被用来评估算法的全局搜索能力、收敛速度和稳定性。优化算法的目标是
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Y.Ge

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值