18448 最小生成树
时间限制:1000MS 代码长度限制:10KB
提交次数:0 通过次数:0
题型: 编程题 语言: G++;GCC;VC
Description
给定结点数为n,边数为m的带权无向连通图G,所有结点编号为1,2,3....n。 求图G的最小生成树的边权和。
输入格式
第一行两个正整数n和m。n,m<=2000 之后的m行,每行三个正整数a,b,w,描述一条连接结点a和b,边权为w的边。1=<a,b<=n,w<=10^18。 注意可能存在重边和自环。
输出格式
一个整数表示图G的最小生成树的边权和(注意用长整型)。
输入样例
7 12 1 2 9 1 5 2 1 6 3 2 3 5 2 6 7 3 4 6 3 7 3 4 5 6 4 7 2 5 6 3 5 7 6 6 7 1
输出样例
16
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll power[2005],vert[2005],v[2005],a[2005][2005];
ll n,m;
ll GetMin()//找到最小权值的下标
{
ll minv=1e18,dx,i;
for(i=1;i<=n;i++)
{
if(power[i]<minv&&v[i]==0)//且不能是集合u中的点
{
minv=power[i];
dx=i;//记录下标
}
}
return dx;
}
ll prim()
{
ll i,j,sum=0;
memset(power,127/3,sizeof(power));//将数组中的每个值置为无穷大
power[1]=0;
for(i=1;i<=n;i++)//从无点开始挑选n次
{
int t=GetMin();//t为最小权值的下标
v[t]=1;
sum+=power[t];
for(j=1;j<=n;j++)
{
if(v[j]==0&&a[t][j]<power[j])//看看能否更新j处的最小权值
{
power[j]=a[t][j];
vert[j]=t;//记录第j个顶点连接何个顶点
}
}
}
return sum;
}
int main()
{
ll i,x,y,z;
cin>>n>>m;
memset(a,127/3,sizeof(a));
for(i=1;i<=m;i++)
{
cin>>x>>y>>z;
if(x==y)//处理出现自环的情况
continue;
a[x][y]=a[y][x]=min(z,a[x][y]);//处理出现重边的情况
}
cout<<prim()<<endl;
// for(i=2;i<=n;i++)
// cout<<i<<" "<<vert[i]<<endl;//输出最小生成树的边
}