代码随想录算法训练营Day51 | 309.买卖股票的最佳时机含冷冻期、714.买卖股票的最佳时机含手续费

本文讲述了如何使用动态规划解决买卖股票的问题,特别关注了冷冻期的存在和卖出时的手续费,通过清晰定义状态分类(持有/不持有,今日卖出/前几日卖出)和状态转移规则来构建DP数组和递推公式。
摘要由CSDN通过智能技术生成

309.买卖股票的最佳时机含冷冻期

初见还是挺懵的,怎么分析感觉都不对。

这题主要需要清除各种状态的分类以及相互间的转换

(由于有一天的冷冻期,所以将不持有的状态进一步分为“今日卖出”和“前几日卖出”)

1、DP数组定义

        dp[i][j]为当前利润,买入则减,卖出则加。j 取值范围[0, 4],分别表示:

                0:持有股票

                1:不持有股票,且股票是当天卖出

                2:不持有股票,且股票是前几天卖出的

                3:不持有股票,且当前处于冷冻期

2、DP数组初始化:dp[0][0]初始化为-prices[0],其余元素都初始化为0或一个最小值

3、递推公式

        · dp[i][0]:延续前一天的状态0,或者在不持有股票的基础上买入股票(只能处于状态2或3才能买入):

                        dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][2] - prices[i], dp[i - 1][3] - prices[i]))

        · dp[i][1]:只能在持有股票(状态0)的基础上才能卖出

                        dp[i][1] = dp[i - 1][0] + prices[i]

        · dp[i][2]:延续前一天的状态2,或是结束状态3的冷冻期:

                        dp[i][2] = max(dp[i - 1][2], dp[i - 1][3])

        · dp[i][1]:只有前一天卖出(状态1),今天才会进入冷冻期:

                        dp[i][3] = dp[i - 1][1]

4、遍历顺序:按时间顺序从前向后遍历

int maxProfit0(vector<int>& prices) {
	// 0:持有股票
	// 1:当天卖出股票
	// 2:之前卖出股票
	// 3:冷冻期
	vector<vector<int>> dp(prices.size(), vector<int>(4, 0));
	dp[0][0] = -prices[0];

	for (int i = 1; i < prices.size(); ++i) {
		dp[i][0] = std::max(dp[i - 1][0], std::max(dp[i - 1][2] - prices[i], dp[i - 1][3] - prices[i]));
		dp[i][1] = dp[i - 1][0] + prices[i];
		dp[i][2] = std::max(dp[i - 1][2], dp[i - 1][3]);
		dp[i][3] = dp[i - 1][1];
	}
	return std::max(dp[prices.size() - 1][1], std::max(dp[prices.size() - 1][2], dp[prices.size() - 1][3]));
}

状态2、3可以压缩为一个状态(状态3实际上为状态2的一个特例)

int maxProfit(vector<int>& prices) {
	// 0:持有股票
	// 1:当天卖出股票
	// 2:之前卖出股票(冷冻期同样也是“之前卖出股票”)
	vector<vector<int>> dp(prices.size(), vector<int>(3, 0));
	dp[0][0] = -prices[0];

	for (int i = 1; i < prices.size(); ++i) {
		dp[i][0] = std::max(dp[i - 1][0], dp[i - 1][2] - prices[i]);
		dp[i][1] = dp[i - 1][0] + prices[i];
		dp[i][2] = std::max(dp[i - 1][2], dp[i - 1][1]);   
	}
	return std::max(dp[prices.size() - 1][1], dp[prices.size() - 1][2]);
}

714.买卖股票的最佳时机含手续费

虚假的中等题,代码可以照搬 122.买卖股票II 卖出的时候加一笔手续费即可

int maxProfit(vector<int>& prices, int fee) {
	vector<vector<int>> dp(prices.size(), vector<int>(2, 0));
	dp[0][0] = -prices[0];

	for (int i = 1; i < prices.size(); ++i) {
		dp[i][0] = std::max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
		// 卖出的时候加上手续费
		dp[i][1] = std::max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
	}
	return dp[prices.size() - 1][1];
}

股票问题总结

股票问题的动规解法还是有一定套路的,自己感觉做下来重点就是整理好状态分类状态转移,前者决定DP数组的定义,后者决定递推公式

状态分类

状态分类的基础——持有/不持有

        · 持有:今天或前几天完成了买入,当前手头持有股票
        · 不持有:今天或前几天完成了卖出,当前手头不持有股票

在持有/不持有的基础上进一步结合题目分析状态分类,如:

        · 123.买卖股票III:持有/不持有进一步分为第一次或第二次的持有/不持有

        · 309.买卖股票含冷冻期:不持有进一步分为今日卖出和前几日卖出

状态转移

状态转移的基础——买入/卖出

· 对于买入:

        明确每次买入时的基本资金是多少,如果只能进行一次买卖,那么基本资金一般是0如果能进行多次买卖,那么基本资金是上一次卖出后的总资产

· 对于卖出:

        一般是在目前持有资金基础上进行卖出,对于冷冻期这类特殊题目还需要进一步分析卖出后的状态转移

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值