初识动态规划

动态规划:能将问题分解成小的子问题,并且大的子问题是与小的子问题有关的

关键是找到二者之间的关系,也就是状态转移方程和边界条件、状态初值

509. 斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

class Solution {
public:
    int fib(int n) {
      /*  1.递归
        if(n<=1)
            return n;
        else
            return fib(n-1)+fib(n-2);*/
    /* 2 动态规划
        if(n<=1)
            return n;
        int dp[n+1];
        dp[0]=0;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    */
    /*3 动态规划优化,压缩存储空间,很容易知道fib(n)只与fib(n-1) fib(n-2)直接相关,因此,只需不断更新他俩即可 */
        if(n<=1) 
            return n;
        int f0=0,f1=1;
        int s;
        for(int i=2;i<=n;i++){//第n个数是第n-1与n-2相加得到的,每次运算完之后f0与f1也相应的后移
            s = f0 +f1;
            f0 =f1;
            f1 =s;
        }
        return s;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值