寻找峰值(局部最大、局部最小)——二分查找

寻找峰值

也就是局部最大,可以采用二分法来实现。当然局部最小也一样。

峰值元素是指其值严格大于左右相邻值的元素。 给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。 你可以假设 nums[-1] = nums[n] = -∞ 。
你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

解题思路

类似这种局部最小和局部最大的问题。我们均可以采用二分的方法来解决,并不一样非要有序才可使用二分进行搜索。特定条件的无序也是可以的。简单来说二分查找的目的就是舍弃一般可以抛弃的降低查找次数。
首先我们先对情况进行分析,首先判断两个端点是否为峰值,如果是则返回;如果不是,借助一下高数中的拉格朗日定理的思想。则两端均具有一个向上的趋势,因此中间必定存在一个峰值的拐点。
在这里插入图片描述
则对于中点可以分为四种情况,

  • ①它就是峰值,均大于左右两边
  • ②它是与它相邻的两个元素,呈现一个递降趋势,则该点与此时的左端点之间必定存在一个峰值。更新右端点。
  • ③与②同理,呈现递增的时候,该点与此时的右端点之间必定存在一个峰值,更新左端点。
  • ④两边都可以。而且两个必定都存在峰值。如下图
    在这里插入图片描述

代码实现

class Solution {
    public int findPeakElement(int[] nums) {
         int len = nums.length;
        int L = 0;
        int R = len -1;
        if(len == 1){
            return 0;
        }
        if(nums[0]>nums[1])
        {
            return L;
        }
        if(nums[len-1] > nums[len-2]){
            return R;
        }
        int mid;
        do{
            mid = L + ((R-L)>>1);
            if(nums[mid]>nums[mid-1] && nums[mid] > nums[mid+1])
            {
                return mid;
            }else if(nums[mid - 1]>nums[mid] && nums[mid] > nums[mid+1])
            {
                R = mid;
            }else if(nums[mid-1] < nums[mid] && nums[mid] < nums[mid+1]) {
                L = mid;
            }else
            {
                L = mid;

            }
        }while(L<R);
        return -1;// 可有可无,返回个-1,代表失败吧
    }
}

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-peak-element
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值