Learning Rich Features at High-Speed for Single-Shot Object Detection
abstract
单级目标检测方法因其具有实时性强、检测精度高等特点,近年来受到广泛关注。通常,大多数现有的单级检测器遵循两个常见的实践:它们使用在ImageNet上预先训练的网络主干来完成分类任务,并使用自顶向下的特征金字塔表示来处理规模变化。作者研究了一个单阶段检测框架,它结合了微调预训练模型和从零开始训练的优点。作者的框架构成了一个标准的网络,使用一个预先训练的主干和一个并行的轻型辅助网络从零开始训练。此外,作者认为通常使用的自顶向下的金字塔表示只关注于将高级语义从顶层传递到底层。然而在作者的检测框架中引入了一个双向网络,它可以有效地传递中低层次和高层次的语义信息。
然后说了一下实验效果好。
1.Introduction
由于深度学习的发展,目标检测也进一步提高,现在的目标检测主要分为2中:一种是单阶段检测,还有一种是两阶段检测。一般来说,两阶段检测是控制准确度,而单阶段方法的主要优势是速度快。现在的目标是让单阶段的检测正确虑也有所提高,在大中型物体的检测中,结果还行,但是在小型物体上检测结果就一般。因此小对象检测是具有挑战性的。
现在的单级方法通常使用更深的网络主干为分类任务在数据集上预先训练。然后,这些检测框架对目标对象检测数据集上的预先训练的网络骨架进行细化,从而实现收敛。
研究表明,训练检测模型从零开始解决这个问题,导致精确定位。但是与基于微调的对应网络相比,从零开始训练时间花费多。因此作者引入一个训练模型,将训练前的和从零开始训练的优点结合起来,该框架使用一个虚报脸前的主干和一个从零开始训练的浅辅助网络。