- 博客(24)
- 收藏
- 关注
原创 1、零基础Apifox测试FastAPI接口入门——GET请求
软件管家中安装就行,或者别的也可以。将默认测试环境设置为本机的8000端口。,此处test为文件名,否则会报错。OK,以上全部保存。
2024-11-05 16:02:34 318
原创 window下使用命令行启动llamafactory报错AttributeError: can‘t set attribute
【代码】window下使用命令行启动llamafactory报错AttributeError: can‘t set attribute。
2024-10-14 14:56:52 466
原创 llamafactory报错TypeError: GenerationMixin._extract_past_from_model_output() got an unexpected keyword
安装即可。ps: 如果还有其它问题可以尝试安装4.43.3版本的transformers。
2024-09-30 09:39:22 575
原创 chatglm本地服务器大模型量化cpu INT4 INT8 half float运行、多卡多GPU运行改这一条指令就行啦!
ChatGLM3常规方案的GPU推演中half和float是两种最常用的格式,half格式占13GB显存,float格式占40GB显存。此外还提供了几种GPU量化格式的推演:INT4和INT8量化。INT4版本的ChatGLM3推演:(不是所有的硬件都支持INT4操作)
2024-09-27 17:09:31 321
原创 pycharm24.2运行框中无法输入中文但是可以粘贴中文、输入英文、数字
去pycharm官网下载任意一个历史版本即可,比如pycharm24.1就无此问题。该问题为pycharm24.2版本问题。输入英文、数字没有问题。
2024-09-26 15:00:44 1159
原创 基于阿里云免费部署Qwen1-8B-chat模型并进行lora参数微调从0到1上手操作
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档。
2024-09-19 17:07:58 1150
原创 基于阿里云部署ChatGLM3-6b从0到1上手操作——解决webui启动chatglm中报错ERROR问题
否则后面必定会报错,提示版本老旧等问题。有2个文件需要修改变量路径,一个是basic_demo下的“web_demo_gradio.py”,另一个是chatgm3-6b下的“config.json”,都是把默认的“THUDM/”修改为“/mnt/workspace/ChatGLM3/”这里使用的是阿里云的PAI,默认已经帮我们配置好了环境变量、网络等等,这里我们直接启动->打开我们创建的实例,点击terminal进入,后面的步骤主要就是参考github上的GLM官方步骤了。点击确定,完成实例创建。
2024-09-10 17:01:16 729
原创 基于阿里云PAI部署LLaMA Factory启动 Web UI时报错Error Connection errored out解决
在进行该操作时报错:Error Connection errored out,如下图。
2024-09-05 11:43:42 618
原创 动手深度学习基础知识——张量、点积、Hadamard积
张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。给定两个向量X,Y,它们的点积(dot product)是相同位置按元素乘积的和。(Hadamard product)(数学符号见下图)。张量是描述具有任意数量轴的n维数组的通用方法。,其中第i行和第j列的元素是bij。两个矩阵的按元素乘法称为。(在1加法中定义)和。
2024-08-08 14:23:20 302
原创 梯度下降概念图解——BGD批量梯度下降、SGD随机梯度下降、MBGD小批量梯度下降
求所有点误差的平均值:(其中x,y和样本数n都是已知数,用常量a,b.c分别代替)对于这个图来说:点p1的均方误差e1就为:e1=(y1-w*x1)^2。表示了学习所需要付出的代价,该函数也是样本点拟合过程的映射(如下图)。拓展到计算每一个点就可以算出无数的e1,e2,e2…SGD随机梯度下降,每下降一步只需要用一个样本进行计算。loss function: 得出的误差函数。BGD批量梯度下降是梯度下降最原始的方式,)重复直至找到最低点。
2024-08-07 13:52:02 361
原创 继axios二次封装后跨域问题解决——配置代理、环境变量
同源(即指在同一个域),就是两个页面具有相同的协议(protool),主机(host)和端口号(port)。URL(Uniform Resource Locator,统一资源定位符)是用于标识和定位互联网上资源的字符串格式。它是Web浏览器、Web服务器等互联网应用程序中用来访问资源的标准格式。1、协议(Protocol):指定了访问资源所使用的协议,如HTTP、HTTPS、FTP 等。例如,在 http:// 或 https:// 中,http 和 https 就是协议。2、主机名(Host)
2024-08-05 14:25:36 996
原创 vue中axios二次封装【简洁、附代码】+api解耦
在这里 vue2 中使用created钩子,vue3 中使用onMounted钩子调用解耦好的 getSliders 的 api 即可。在 utils 目录下新建 api 文件夹,在 api 下新建 course.js。该【二、】部分在utils/request.js目录下。为什么要进行axios的二次封装?在请求拦截器中 ==>在响应拦截器中 ==>为什么要进行api解耦?
2024-08-05 09:20:08 1072
原创 一个最简单的模型验证套路——验证训练好的模型【附完整代码】
在这里将模型验证过程包裹在with torch.no_grad()中,在这个上下文中,所有操作都不会追踪梯度,即不会计算梯度信息,这有助于加快计算速度并减少内存使用。同理,本文采用的 CIFAR10数据集 中的图像数据大小为 32×32 ,所以我们这里也需要将图像处理成 32×32 的大小并将图像转换为张量的形式。任意加载一张照片 (上文模型训练CIFAR10数据集中十个分类中的一种,我这里加载的是修勾~)。这里由于我加载的是PNG图片,PNG图片为RGBA四个颜色通道,这里需要将他转换为RGB色彩。
2024-08-02 09:16:45 473
原创 监督学习、无监督学习、半监督学习、弱监督学习、强化学习 和 主动学习
弱监督学习通常指的是训练数据的标签质量不完全可靠,可能是不准确的、噪声较多的或是不完全的。例如,利用搜索引擎的结果为图像自动标注标签,这些标签可能不完全准确。
2024-08-01 14:15:12 1466
原创 python中的_xx、_ _xx、_ _xx_ _和__init__()、__new__()、__str__()、__del__()、__call__()等方法详解
_xxx "单下划线 " 开始的成员变量叫做保护变量,意思是只有类实例和子类实例能访问到这些变量,需通过类提供的接口进行访问;*不能用’frommodule import '导入。_ _xxx 类中的私有变量/方法名 (Python的函数也是对象,所以成员方法称为成员变量也行得通。)," 双下划线 " 开始的是私有成员,意思是只有类对象自己能访问,连子类对象也不能访问到这个数据。“_ xxx _ ”系统定义名字,前后均有一个“双下划线”, 代表python里特殊方法专用的标识,如 “_ _init
2024-07-31 09:28:32 759
原创 激活函数——Sigmoid、tanh、ReLU、softmax激活函数
Sigmoid函数的图形是一个S形曲线,也称为逻辑曲线。当输入值 𝑥 非常大时,函数输出趋近于1;当输入值 𝑥 非常小时,函数输出趋近于0。当 𝑥 接近0时,函数的输出约为0.5。给定元素 x ,ReLU函数被定义为该元素与 0 对比中的最大值。在二分类任务时,经常使用sigmoid激活函数。而在处理多分类问题的时候,需要使用softmax函数。它的输出有两条规则。ReLU函数通过将相应的活性值设为0,仅保留正元素并丢弃所有负元素。如下为ReLU函数的曲线图。σ(x) 是Sigmoid函数的输出。
2024-07-26 10:20:29 1116
原创 npm install 后缀 -s -d -g
**npm install package-name-S** 是 **npm install package-name --save**的简写,是安装的**生产依赖**,也就是说,该依赖包是我们应用程序的一部分。**npm install package-name-D** 是 **npm install package-name --save-dev** 的简写,是安装的**开发依赖**,即是开发阶段所需要的依赖项。**npm install package-name-g
2024-07-25 11:33:13 186
原创 准确率、精确率、召回率、F1-score 概念、计算原理
TP(True Positives):真正例,即正例预测为真(预测为正例而且实际上也是正例);FP(False Positives):假正例,即负例预测为真(预测为正例然而实际上却是负例);FN(false Negatives):假负例,即正例预测为假(预测为负例然而实际上却是正例);TN(True Negatives):真负例,即负例预测为假(预测为负例而且实际上也是负例)。
2024-07-25 09:55:39 967
原创 0基础入门模型训练 ——【完整的模型训练套路】神经网络计算,tensorboard展示计算train_loss、test_loss、test_accuracy
本次模型训练采用CIFAR10数据集 ,数据集中一共有 50000 张训练图片和 10000 张测试图片,尺寸为 32×32。
2024-07-23 14:05:32 371
原创 NLP经典论文阅读——Transformer、BERT、LSTM、Elmo
论文提取链接:链接: https://pan.baidu.com/s/1iN1SAjXCqqpycCtlp-ugrw 提取码: 6p5c。–来自百度网盘超级会员v6的分享。
2024-07-19 14:16:04 270
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人