算法学习笔记 - BFS

广度优先搜索代码框架

广度优先搜索 主要用来解决在一幅图中, 找到从起点到终点的最近距离.
主要使用队列数据结构来存储每一步所要处理的数据
使用set来记录处理的数据是否访问过

代码框架

int BFS(Node start, Node target)
{
    queue<Node> q;	    //核心数据结构
    set<Node> visited;  //记录访问过的节点
    q.push(start);      //将起点加入队列
    visited.insert(start);
     
    int step = 0;   //记录扩散的步数
    while(!q.empty())
    {
        int sz = q.size();
        //将当前队列中的所有节点向四周扩散
        for(int i = 0; i<sz; i++)
        {
            Node cur = q.top();
            q.pop();
            //判断是否到达终点
            if(cur == target)
                return step;
            //将cur相邻节点加入队列
            for(Node x : cur.child)
                if(visited.count(x) == 0)
                {
                    q.push(x);
                    visited.insert(x);
                }
        }
        //更新步数
        step++;
    }
}

题目练习

111. 二叉树的最小深度 - 简单

  • start: 输入的根结点
  • target: 结点的左右子树都为空
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int minDepth(TreeNode* root) {
        queue<TreeNode*> q;
        set<TreeNode*> visited;
        q.push(root);
        visited.insert(root);
        int step = 1;
        
        while(!q.empty())
        {
            int sz = q.size();
            for(int i = 0; i<sz; ++i)
            {
                TreeNode* cur = q.front();
                q.pop();
                if(cur->left == nullptr && cur->right==nullptr)
                    return step;
                if(cur->left != nullptr && visited.count(cur->left)==0)
                {
                    q.push(cur->left);
                    visited.insert(cur->left);
                }
                if(cur->right != nullptr && visited.count(cur->right)==0)
                {
                    q.push(cur->right);
                    visited.insert(cur->right);
                }
            }
            step++;
        }
        return step;
    }
};

因为是二叉树, 不需要记录结点是否被访问过, 代码中的visited集的相关部分可以省略.


剑指 Offer II 109. 开密码锁 - 中等

  • 先根据框架写出代码, 检查是否能够遍历所有的密码组合
  • 然后再添加密码对死亡密码的检测
class Solution {
public:
    string plusOne(string cur, int i)
    {
        if(cur[i] == '9') cur[i] = '0';
        else cur[i] += 1;
        return cur;
    }
    string minusOne(string cur, int i)
    {
        if(cur[i] == '0') cur[i] = '9';
        else cur[i] -= 1;
        return cur;
    }
    int openLock(vector<string>& deadends, string target) {
        queue<string> q;
        set<string> visited;
        //构建死亡密码集合
        set<string> deadendsset(deadends.begin(), deadends.end());
        q.push("0000");
        visited.insert("0000");

        int step = 0;
        while(!q.empty())
        {
            int sz = q.size();
            for(int i = 0; i<sz; ++i)
            {
                string cur = q.front();
                q.pop();
                //判断密码的合法性和是否等于目标
                if(deadendsset.count(cur) == 1) continue;
                if(cur == target) return step;
                
                int s_sz = cur.size();
                for(int j = 0; j<s_sz; ++j)
                {
                    string cur_next = plusOne(cur, j);
                    if(visited.count(cur_next)==0)
                    {
                        q.push(cur_next);
                        visited.insert(cur_next);
                    }
                    cur_next = minusOne(cur, j);
                    if(visited.count(cur_next)==0)
                    {
                        q.push(cur_next);
                        visited.insert(cur_next);
                    }
                }  
            }
            step++;
        }
        //如果最终没有到达目标密码, 返回-1
        return -1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值