- 博客(9)
- 收藏
- 关注
原创 Caffe Python=3.5 Ubuntu 18.04 CPU版安装
sudo apt-get upgrade sudo apt install caffe-cpu import sys sys.path.append(’/usr/lib/python3/dist-packages/’)
2019-04-09 16:25:24 408
原创 pip -- 修改pip源为国内源
Ubuntu系统下,创建~/.pip文件夹,并在其中创建pip.conf文件。 编辑pip.conf文件如下 [global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple [install] trusted-host=mirrors.aliyun.com ...
2019-01-07 16:00:57 320
原创 CV2 -- 简单实现图像水平、垂直翻转
import cv2 img_dir = "" save_path = "" img = cv2.imread("img_dir") # 水平翻转 flip_horizontal = cv2.flip(img, 1) # 垂直翻转 flip_vertical = cv2.flip(img, 0) #水平加垂直翻转 flip_hv = cv2.flip(img, -1) cv2.imwrit..
2018-12-25 10:38:58 7749
原创 Tensorflow -- 图像分类任务中读取自己的图片并添加标签
借用猫狗大战的图片来做数据读取的演示 import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt cat_filename = [] cat_label = [] dog_filename = [] dog_label = [] #tensorflow数据读取机制:包括创建文件名队...
2018-08-27 11:12:49 8048 2
原创 Python -- try/except/else/finally用法
首先,我们定义一个取数组中某个元素的函数。 def fetch(index): a = [0, 1, 2, 3] return a[index] 我们先来看看try和except之间的关系。 try: fetch(4) except: print("index is out of range!") 只有try和except时,try无报错就只执行try,...
2018-08-26 15:00:58 564 2
原创 神经网络 -- Softmax以及Cross entropy(交叉熵)
softmax和cross entropy都是神经网络中重要的函数。而且都有着广泛的应用。 softmax之所以称为“soft”是由于它不像one-hot中的值,只有0或者1。 softmax会将输入的值依据大小,映射成(0,1)之间的概率分布。所以这些值相加的和为1。 因此,hot-one不可导,softmax是可求导的。 softmax的计算公式为 其中,表示数组V中的第i个元素...
2018-08-22 21:09:46 728
原创 Tensorflow -- tf.train.batch函数
tf.train.batch()函数中,主要需要关注的是四个参数 tensors, batch_size, num_threads, capacity tensors – 训练数据的来源 batch_size – 每次从队列中取出的数据量 num_threads – 设置用来实现多线程读取 capacity – 队列中的数据量 训练的流程就是首先取出capacity数量的数据加入队列,...
2018-08-05 16:24:50 1438
原创 Python -- 在Anaconda Prompt终端调用自己的.py文件
首先打开终端,更改当前目录至需要调用的.py文件目录。然后进入python。 然后import需要调用的.py文件名即可运行。
2018-08-03 11:33:04 16987
原创 Python -- 同类图像的批量重命名
#coding = utf-8 import os #给出需要重命名的图像路径data_dir img_dir = '...' #定义一个重命名的函数 def rename(data_dir, category): #data_dir--图像的路径,category--图像所属的类 i = 0 for file in os.listdir(data_dir): #用于遍历路径中的...
2018-08-02 22:08:11 279
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人