【实用的数据结构】字典树--前缀树

文章介绍了Trie树(又称字典树或前缀树)的基本概念和性质,包括其作为多叉树结构的特征。详细描述了构建字典树的步骤,如创建根节点、插入字符串等,并提供了一个C++代码示例来实现字典树的插入、搜索、删除和前缀判断等功能。
摘要由CSDN通过智能技术生成

字典树

介绍

Trie树,又叫字典树前缀树(Prefix Tree)单词查找树键树,是一种多叉树结构。如下图:

在这里插入图片描述

性质

  1. 根节点不包含字符,除根节点外的每一个子节点都包含一个字符。
  2. 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。
  3. 每个节点的所有子节点包含的字符互不相同。

步骤

当构建字典树时,可以按照以下步骤进行:

  1. 创建根节点:开始构建字典树时,首先创建一个根节点。根节点不代表任何字符,可以看作是一个空字符串或特殊字符。

  2. 插入字符串:对于要插入的每个字符串,从根节点开始,按字符顺序逐步插入。遍历字符串的字符,对于每个字符,检查当前节点是否有对应的子节点。

    • 如果存在对应的子节点,则将当前节点更新为子节点,并继续处理下一个字符。
    • 如果不存在对应的子节点,则创建一个新的子节点,并将其与当前节点连接。然后将当前节点更新为新创建的子节点,并继续处理下一个字符。

    重复以上步骤,直到遍历完整个字符串。最后,将最后一个字符的节点标记为终止节点,表示该字符串在字典树中存在。

  3. 重复插入:根据需要,可以重复执行插入操作,将多个字符串插入到字典树中。

构建字典树的过程是根据字符串的字符逐步创建节点并建立连接,直到将所有字符串都插入完成。最终形成的字典树可以高效地支持字符串的搜索和前缀匹配操作。

下面是一个示例来构建一个字典树,包含字符串 “apple”、“apply”、“app”、“banana” 和 “bat”:

         (root)
          /   \
         a     b
        / \    |
       p   b   a
      / \   \   \
     p   l   t   n
    / \   \      |
   l   e   y     a
        \  
         y  

具体实现

//字典树--每各节点的只有一个父亲节点,每个节点的子节点的个数不超过字母的个数,这就保证了每各单词路径的唯一性
#include<iostream>
#include<vector>
using namespace std;
struct node {
    int next[26];//26个字母
    int cnt;//以该节点结尾的字符串被访问次数--标记该节点是否为单词的结尾节点
}tree[1000000];//树
int cut = 1;//节点计数器

//插入字符串
void insert(string s) {
    int len = s.length();
    int now = 0;//当前节点
    for (int i = 0; i < len; i++) {//遍历字符串
        int index = s[i] - 'a';
        if (tree[now].next[index] == 0) {//如果没有这个节点
            tree[now].next[index] = cut++;//新建节点
        }
        now = tree[now].next[index];//转移到下一个节点
    }
    tree[now].cnt++;//当前节点被访问次数+1--以该节点结尾的字符串被访问了一次
}

//查找字符串 --返回该字符串
string search(string s) {
    int len = s.length();
    int now = 0;//当前节点
    for (int i = 0; i < len; i++) {//遍历字符串
        int index = s[i] - 'a';
        if (tree[now].next[index] == 0) {//如果没有这个节点
            return "no";//返回
        }
        now = tree[now].next[index];//转移到下一个节点
    }
    if (tree[now].cnt > 0) {//如果当前节点被访问次数大于0
        return s;//返回该字符串
    }
    else {
        return "no";//返回
    }
}

//删除字符串--因为每个节点的父亲节点只有一个,所以只需要将以该节点结尾的字符串被访问次数-1即可
void del(string s) {
    int len = s.length();
    int now = 0;//当前节点
    for (int i = 0; i < len; i++) {//遍历字符串
        int index = s[i] - 'a';
        if (tree[now].next[index] == 0) {//如果没有这个节点
            return;//返回
        }
        now = tree[now].next[index];//转移到下一个节点
    }
    tree[now].cnt--;//以该节点结尾的字符串被访问次数-1
}

//判断字符串是否存在
bool isExist(string s) {
    int len = s.length();
    int now = 0;//当前节点
    for (int i = 0; i < len; i++) {//遍历字符串
        int index = s[i] - 'a';
        if (tree[now].next[index] == 0) {//如果没有这个节点
            return false;//返回
        }
        now = tree[now].next[index];//转移到下一个节点
    }
    if (tree[now].cnt > 0) {//如果以该节点结尾的字符串被访问次数0
        return true;//返回true
    }
    else {
        return false;//返回false
    }
}

//判断字符串是否是另一个字符串的前缀
int isPrefix(string s) {
    int flag = 0;
    int len = s.length();
    int now = 0;//当前节点
    for (int i = 0; i < len; i++) {//遍历字符串
        int index = s[i] - 'a';
        if (tree[now].next[index] == 0) {//如果没有这个节点
            flag = 1;
            break;//返回
        }
        //if (i == len - 1 && tree[now].next[index] != 0) {//如果是最后一个节点
        //    flag = 0;
        //    break;
        //}
        now = tree[now].next[index];//转移到下一个节点
    }
    if (flag == 0) {
        return now;//返回当前节点
    }
    else {
        return -1;//返回-1
    }
}

//以该点为根节点进行深度优先搜索
void dfsForPrefix(int now, string s) {
    if (tree[now].cnt > 0) {//如果以该节点结尾的字符串被访问次数大于0
        cout << s << endl;//输出该字符串
    }
    for (int i = 0; i < 26; i++) {//遍历26个字母
        if (tree[now].next[i] != 0) {//如果有这个节点
            dfsForPrefix(tree[now].next[i], s + char(i + 'a'));//深度优先搜索
        }
    }
}


//根据前缀查找字符串--返回以该前缀开头的字符串
string searchByPrefix(string s) {
    int len = s.length();
    int now = 0;//当前节点
    int index = isPrefix(s);//判断是否是前缀
    if (index == -1) {//如果不是前缀
        return "no";//返回
    }
    else {
        now = index;//转移到前缀的最后一个节点
    }
    //查找以该前缀开头的字符串
    dfsForPrefix(index, s);//以该节点为根节点进行深度优先搜索

    return s;//返回该前缀
}


//判断字符串是否是另一个字符串的子串
bool isSubString(string s) {
    int len = s.length();
    int now = 0;//当前节点
    for (int i = 0; i < len; i++) {//遍历字符串
        int index = s[i] - 'a';
        if (tree[now].next[index] == 0) {//如果没有这个节点
            return false;//返回
        }
        now = tree[now].next[index];//转移到下一个节点
    }
    if (tree[now].cnt > 0) {//如果以该节点结尾的字符串被访问次数大于0
        return true;//返回true
    }
    else {
        return false;//返回false
    }
}

int main() {
    insert("hello");
    insert("world");
    insert("copilot");
    insert("ok");
    insert("result");
    insert("define");
    insert("definite");
    insert("definitely");
    cout<<search("definitely")<<endl;
    del("definitely");
    cout<<search("definitely")<<endl;
    //-------------------------------------
   /* cout << search("hello") << endl;
    cout << search("world") << endl;
    cout << search("copilot") << endl;
    cout << search("ok") << endl;
    cout << search("result") << endl;
    cout << search("define") << endl;
    cout << search("definite") << endl;
    cout << search("definitely") << endl;
    cout << search("definitely1") << endl;*/
    cout << searchByPrefix("def") << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值