第3章 k近邻法

1. k k k近邻法是基本且简单的分类与回归方法。 k k k近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 k k k个最近邻训练实例点,然后利用这 k k k个训练实例点的类的多数来预测输入实例点的类。

2. k k k近邻模型对应于基于训练数据集对特征空间的一个划分。 k k k近邻法中,当训练集、距离度量、 k k k值及分类决策规则确定后,其结果唯一确定。

3. k k k近邻法三要素:距离度量、 k k k值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。 k k k值小时, k k k近邻模型更复杂; k k k值大时, k k k近邻模型更简单。 k k k值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的 k k k

常用的分类决策规则是多数表决,对应于经验风险最小化。

4. k k k近邻法的实现需要考虑如何快速搜索k个最近邻点。kd树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对 k k k维空间的一个划分,其每个结点对应于 k k k维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

距离度量
设特征空间 x x x n n n维实数向量空间 , x i , x j ∈ X x_{i}, x_{j} \in \mathcal{X} xi,xjX, x i = ( x i ( 1 ) , x i ( 2 ) , ⋯   , x i ( n ) ) T x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(n)}\right)^{\mathrm{T}} xi=(xi(1),xi(2),,xi(n))T, x j = ( x j ( 1 ) , x j ( 2 ) , ⋯   , x j ( n ) ) T x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \cdots, x_{j}^{(n)}\right)^{\mathrm{T}} xj=(xj(1),xj(2),,xj(n))T ,则: x i x_i xi, x j x_j xj L p L_p Lp距离定义为:

L p ( x i , x j ) = ( ∑ i = 1 n ∣ x i ( i ) − x j ( l ) ∣ p ) 1 p L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{i=1}^{n}\left|x_{i}^{(i)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}} Lp(xi,xj)=(i=1nxi(i)xj(l)p)p1

p = 1 p= 1 p=1 曼哈顿距离
p = 2 p= 2 p=2 欧氏距离
p = ∞ p= \infty p= 切比雪夫距离

#距离度量

import math
from itertools import combinations

def L(x, y, p=2):#定义一个新的函数
    # x1 = [1, 1], x2 = [5,1]
    if len(x) == len(y) and len(x) > 1:#检查x与y的长度是否相等
        sum = 0
        for i in range(len(x)):#i的范围
            sum += math.pow(abs(x[i] - y[i]), p)#Math.pow(底数,几次方),即x[i] - y[i]的绝对值的p次方相加
        return math.pow(sum, 1 / p)#sum的1 / p方
    else:
        return 0#x与y的长度不相等,则返回0

课本例3.1

x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]

# x1, x2
for i in range(1, 5):
    r = {'1-{}'.format(c): L(x1, c, p=i) for c in [x2, x3]}
    print(min(zip(r.values(), r.keys())))

输出:
(4.0, ‘1-[5, 1]’)
(4.0, ‘1-[5, 1]’)
(3.7797631496846193, ‘1-[4, 4]’)
(3.5676213450081633, ‘1-[4, 4]’)

python实现,遍历所有数据点,找出 n n n个距离最近的点的分类情况,少数服从多数

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter

# 导入数据
iris = load_iris()#导入iris数据集,是安德森鸢尾花卉数据集。iris_data是一个类似字典的对象。
df = pd.DataFrame(iris.data, columns=iris.feature_names)#DataFrame生成二维数据表,列标为iris表的特征名
df['label'] = iris.target#iris的每个样本都包含了品种信息,即目标属性(第5列,也叫target或label)
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']#df的列标
# data = np.array(df.iloc[:100, [0, 1, -1]])

print(df)

输出:
sepal length sepal width petal length petal width label
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
5 5.4 3.9 1.7 0.4 0
6 4.6 3.4 1.4 0.3 0
7 5.0 3.4 1.5 0.2 0
8 4.4 2.9 1.4 0.2 0
9 4.9 3.1 1.5 0.1 0
10 5.4 3.7 1.5 0.2 0
11 4.8 3.4 1.6 0.2 0
12 4.8 3.0 1.4 0.1 0
13 4.3 3.0 1.1 0.1 0
14 5.8 4.0 1.2 0.2 0
15 5.7 4.4 1.5 0.4 0
16 5.4 3.9 1.3 0.4 0
17 5.1 3.5 1.4 0.3 0
18 5.7 3.8 1.7 0.3 0
19 5.1 3.8 1.5 0.3 0
20 5.4 3.4 1.7 0.2 0
21 5.1 3.7 1.5 0.4 0
22 4.6 3.6 1.0 0.2 0
23 5.1 3.3 1.7 0.5 0
24 4.8 3.4 1.9 0.2 0
25 5.0 3.0 1.6 0.2 0
26 5.0 3.4 1.6 0.4 0
27 5.2 3.5 1.5 0.2 0
28 5.2 3.4 1.4 0.2 0
29 4.7 3.2 1.6 0.2 0
… … … … … …
120 6.9 3.2 5.7 2.3 2
121 5.6 2.8 4.9 2.0 2
122 7.7 2.8 6.7 2.0 2
123 6.3 2.7 4.9 1.8 2
124 6.7 3.3 5.7 2.1 2
125 7.2 3.2 6.0 1.8 2
126 6.2 2.8 4.8 1.8 2
127 6.1 3.0 4.9 1.8 2
128 6.4 2.8 5.6 2.1 2
129 7.2 3.0 5.8 1.6 2
130 7.4 2.8 6.1 1.9 2
131 7.9 3.8 6.4 2.0 2
132 6.4 2.8 5.6 2.2 2
133 6.3 2.8 5.1 1.5 2
134 6.1 2.6 5.6 1.4 2
135 7.7 3.0 6.1 2.3 2
136 6.3 3.4 5.6 2.4 2
137 6.4 3.1 5.5 1.8 2
138 6.0 3.0 4.8 1.8 2
139 6.9 3.1 5.4 2.1 2
140 6.7 3.1 5.6 2.4 2
141 6.9 3.1 5.1 2.3 2
142 5.8 2.7 5.1 1.9 2
143 6.8 3.2 5.9 2.3 2
144 6.7 3.3 5.7 2.5 2
145 6.7 3.0 5.2 2.3 2
146 6.3 2.5 5.0 1.9 2
147 6.5 3.0 5.2 2.0 2
148 6.2 3.4 5.4 2.3 2
149 5.9 3.0 5.1 1.8 2

[150 rows x 5 columns]

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')#画散点图的范围
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')#横坐标的名称
plt.ylabel('sepal width')#纵坐标的名称
plt.legend()#添加图例
plt.show()#显示图片

输出:
在这里插入图片描述

data = np.array(df.iloc[:100, [0, 1, -1]])
#将列表list或元组tuple转换为ndarray数组,iloc函数只根据行列号对数据进行索引,行到100,列为0,1,-1
X, y = data[:,:-1], data[:,-1]#x,y数据的取值。x取所有行,列到倒数第二列;y取所有行,列为最后一列
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
'''
train_test_split()是分离器函数,用于将数组或矩阵划分为训练集和测试集,
函数样式为:X_train, X_test, y_train, y_test = train_test_split(train_data, train_target, test_size, random_state,shuffle)
train_data:待划分的样本数据
train_target:待划分的对应样本数据的样本标签
test_size:1)浮点数,在0 ~ 1之间,表示样本占比(test_size = 0.3,则样本数据中有30%的数据作为测试数据,记入X_test,其余70%数据记入X_train,
 同时适用于样本标签); 2)整数,表示样本数据中有多少数据记入X_test中,其余数据记入X_train)
'''

class KNN:
    def __init__(self, X_train, y_train, n_neighbors=3, p=2):#构造函数
        """
        parameter: n_neighbors 临近点个数
        parameter: p 距离度量
        """
        self.n = n_neighbors
        self.p = p
        self.X_train = X_train
        self.y_train = y_train

    def predict(self, X):
        #设置一个空列表,取n个点
        knn_list = []
        for i in range(self.n):#先取n_neighbers个点,放入空列表.
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)#求二范数,即欧式距离。
            knn_list.append((dist, self.y_train[i]))#在列表末尾添加新的对象

        for i in range(self.n, len(self.X_train)):
            '''
            range()函数创建一个包含指定范围的元素的数组,
            再取剩下的n-n_neighbers个点,然后与n_neihbers个点比大小,将距离大的点更新出局,保证knn_list里面是距离小的点。
            '''
            max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))#求原来表格里的最大值
            #knn_list为对象,key=lambda x: x[0] 为对前面的对象中的第一维数据的值进行求最大值。key=lambda 变量:变量[维数]
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)#求二范数
            if knn_list[max_index][0] > dist:
                knn_list[max_index] = (dist, self.y_train[i])#找出与X最邻近的n_neighbors个点

        #取出最后一列值(类别值),计算最邻近的n_neighbors个点多数属于某个类
        knn = [k[-1] for k in knn_list]
        count_pairs = Counter(knn)
#         max_count = sorted(count_pairs, key=lambda x: x[-1])#以类别数最多的作为被分类的类别
          # count_pairs为待排序的对象,key=lambda x: x[-1] 为对前面的对象中的倒数第一维数据的值进行排序。
        max_count = sorted(count_pairs.items(), key=lambda x: x[1])[-1][0]#不太明白
        return max_count

    def score(self, X_test, y_test): # score就是一个预测正确率
        right_count = 0
        n = 10
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:#判断是否正确
                right_count += 1#正确+1
        return right_count / len(X_test)#计算正确率

clf = KNN(X_train, y_train)
print(clf.score(X_test, y_test))#输出得分率

输出:
1.0

test_point = [6.0, 3.0]
print('Test Point: {}'.format(clf.predict(test_point)))#返回该点的预测标签

输出:
Test Point: 1.0

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')#画散点图的范围
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')#画[6.0, 3.0]
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
plt.show()

输出:
在这里插入图片描述

from sklearn.neighbors import KNeighborsClassifier#用于实现k近邻算法的分类器
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)

print(clf_sk.score(X_test, y_test))#测试集的得分正确率

输出:
1.0

sklearn.neighbors.KNeighborsClassifier

  • n_neighbors: 临近点个数
  • p: 距离度量
  • algorithm: 近邻算法,可选{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}
  • weights: 确定近邻的权重

kd树
kd树是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。

kd树是二叉树,表示对 k k k维空间的一个划分(partition)。构造kd树相当于不断地用垂直于坐标轴的超平面将 k k k维空间切分,构成一系列的k维超矩形区域。kd树的每个结点对应于一个 k k k维超矩形区域。

构造kd树的方法如下:

构造根结点,使根结点对应于 k k k维空间中包含所有实例点的超矩形区域;通过下面的递归方法,不断地对 k k k维空间进行切分,生成子结点。在超矩形区域(结点)上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域 (子结点);这时,实例被分到两个子区域。这个过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

通常,依次选择坐标轴对空间切分,选择训练实例点在选定坐标轴上的中位数 (median)为切分点,这样得到的kd树是平衡的。注意,平衡的kd树搜索时的效率未必是最优的。

构造平衡kd树算法
输入: k k k维空间数据集 T = { x 1 , x 2 , … , x N } T=\{x_1,x_2,…,x_N\} T{x1x2,,xN}

其中 x i = ( x i ( 1 ) , x i ( 2 ) , ⋯   , x i ( k ) ) T x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(k)}\right)^{\mathrm{T}} xi=(xi(1),xi(2),,xi(k))T i = 1 , 2 , … , N i=1,2,…,N i1,2,,N

输出:kd树。

(1)开始:构造根结点,根结点对应于包含 T T T k k k维空间的超矩形区域。

选择 x ( 1 ) x^{(1)} x(1)为坐标轴,以T中所有实例的 x ( 1 ) x^{(1)} x(1)坐标的中位数为切分点,将根结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现。

由根结点生成深度为1的左、右子结点:左子结点对应坐标 x ( 1 ) x^{(1)} x(1)小于切分点的子区域, 右子结点对应于坐标 x ( 1 ) x^{(1)} x(1)大于切分点的子区域。

将落在切分超平面上的实例点保存在根结点。

(2)重复:对深度为 j j j的结点,选择 x ( 1 ) x^{(1)} x(1)为切分的坐标轴, l = j ( m o d k ) + 1 l=j(modk)+1 lj(modk)+1,以该结点的区域中所有实例的 x ( 1 ) x^{(1)} x(1)坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现。

由该结点生成深度为 j + 1 j+1 j+1的左、右子结点:左子结点对应坐标 x ( 1 ) x^{(1)} x(1)小于切分点的子区域,右子结点对应坐标 x ( 1 ) x^{(1)} x(1)大于切分点的子区域。

将落在切分超平面上的实例点保存在该结点。

(3)直到两个子区域没有实例存在时停止。从而形成kd树的区域划分。

# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt  # k维向量节点(k维空间中的一个样本点)
        self.split = split  # 整数(进行分割维度的序号)
        self.left = left  # 该结点分割超平面左子空间构成的kd-tree
        self.right = right  # 该结点分割超平面右子空间构成的kd-tree


class KdTree(object):
    def __init__(self, data):
        k = len(data[0])  # 数据长度

        def CreateNode(split, data_set):  # 按第split维划分数据集exset创建KdNode
            if not data_set:  # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象中的序号
            #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2  # //为Python中的整数除法
            median = data_set[split_pos]  # 中位数分割点
            split_next = (split + 1) % k  # 周期坐标

            # 递归的创建kd树
            return KdNode(
                median,
                split,
                CreateNode(split_next, data_set[:split_pos]),  # 创建左子树
                CreateNode(split_next, data_set[split_pos + 1:]))  # 创建右子树

        self.root = CreateNode(0, data)  # 从第0维分量开始构建kd树,返回根节点


# KDTree的前序遍历
def preorder(root):
    print(root.dom_elt)
    if root.left:  # 节点不为空
        preorder(root.left)
    if root.right:
        preorder(root.right)

# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple",
                    "nearest_point  nearest_dist  nodes_visited")


def find_nearest(tree, point):
    k = len(point)  # 数据维度

    def travel(kd_node, target, max_dist):
        if kd_node is None:
            return result([0] * k, float("inf"),
                          0)  # python中用float("inf")和float("-inf")表示正负无穷

        nodes_visited = 1

        s = kd_node.split  # 进行分割的维度
        pivot = kd_node.dom_elt  # 进行分割的“轴”

        if target[s] <= pivot[s]:  # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
            nearer_node = kd_node.left  # 下一个访问节点为左子树根节点
            further_node = kd_node.right  # 同时记录下右子树
        else:  # 目标离右子树更近
            nearer_node = kd_node.right  # 下一个访问节点为右子树根节点
            further_node = kd_node.left

        temp1 = travel(nearer_node, target, max_dist)  # 进行遍历找到包含目标点的区域

        nearest = temp1.nearest_point  # 以此叶结点作为“当前最近点”
        dist = temp1.nearest_dist  # 更新最近距离

        nodes_visited += temp1.nodes_visited#统计访问过的节点数

        if dist < max_dist:
            max_dist = dist  # 最近点将在以目标点为球心,max_dist为半径的超球体内

        temp_dist = abs(pivot[s] - target[s])  # 第s维上目标点与分割超平面的距离
        if max_dist < temp_dist:  # 判断超球体是否与超平面相交
            return result(nearest, dist, nodes_visited)  # 不相交则可以直接返回,不用继续判断

        temp_dist = sqrt(sum((p1 - p2)**2 for p1, p2 in zip(pivot, target)))

        if temp_dist < dist:  # 如果“更近”
            nearest = pivot  # 更新最近点
            dist = temp_dist  # 更新最近距离
            max_dist = dist  # 更新超球体半径

        # 检查另一个子结点对应的区域是否有更近的点
        temp2 = travel(further_node, target, max_dist)

        nodes_visited += temp2.nodes_visited#统计访问过的节点数
        if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
            nearest = temp2.nearest_point  # 更新最近点
            dist = temp2.nearest_dist  # 更新最近距离

        return result(nearest, dist, nodes_visited)

    return travel(tree.root, point, float("inf"))  # 从根节点开始递归

例3.2

data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
print(preorder(kd.root))

输出:
[7, 2]
[5, 4]
[2, 3]
[4, 7]
[9, 6]
[8, 1]

from time import clock
from random import random

# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
    return [random() for _ in range(k)]

# 产生n个k维随机向量
def random_points(k, n):
    return [random_point(k) for _ in range(n)]
ret = find_nearest(kd, [3,4.5])#在例3 的基础上,找[3,4.5]的最近坐标点、最近距离和访问过的节点数
print (ret)

输出:
Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)

N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N))            # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8])      # 四十万个样本点中寻找离目标[0.1,0.5,0.8]最近的点
t1 = clock()
print ("time: ",t1-t0, "s")#遍历的时间
print (ret2)

输出:
time: 5.7948833749999995 s
Result_tuple(nearest_point=[0.09325617986499646, 0.4899413714325237, 0.7901051691014777], nearest_dist=0.015638503674651326, nodes_visited=88)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值