第4章 朴素贝叶斯

第4章 朴素贝叶斯
1.朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y),然后求得后验概率分布 P ( Y ∣ X ) P(Y|X) P(YX)。具体来说,利用训练数据学习 P ( X ∣ Y ) P(X|Y) P(XY) P ( Y ) P(Y) P(Y)的估计,得到联合概率分布:

P ( X , Y ) = P ( Y ) P ( X ∣ Y ) P(X,Y)=P(Y)P(X|Y) P(X,Y)P(Y)P(XY)
概率估计方法可以是极大似然估计或贝叶斯估计。

2.朴素贝叶斯法的基本假设是条件独立性,

P ( X a m p ; = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) a m p ; = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) \begin{aligned} P(X&=x | Y=c_{k} )=P\left(X^{(1)}=x^{(1)}, \cdots, X^{(n)}=x^{(n)} | Y=c_{k}\right) \\ &=\prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} | Y=c_{k}\right) \end{aligned} P(Xamp;=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)amp;=j=1nP(X(j)=x(j)Y=ck)
这是一个较强的假设。由于这一假设,模型包含的条件概率的数量大为减少,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。

3.朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测。

P ( Y ∣ X ) = P ( X , Y ) P ( X ) = P ( Y ) P ( X ∣ Y ) ∑ Y P ( Y ) P ( X ∣ Y ) P(Y | X)=\frac{P(X, Y)}{P(X)}=\frac{P(Y) P(X | Y)}{\sum_{Y} P(Y) P(X | Y)} P(YX)=P(X)P(X,Y)=YP(Y)P(XY)P(Y)P(XY)
将输入 x x x分到后验概率最大的类 y y y

y = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j = 1 n P ( X j = x ( j ) ∣ Y = c k ) y=\arg \max _{c_{k}} P\left(Y=c_{k}\right) \prod_{j=1}^{n} P\left(X_{j}=x^{(j)} | Y=c_{k}\right) y=argckmaxP(Y=ck)j=1nP(Xj=x(j)Y=ck)
后验概率最大等价于0-1损失函数时的期望风险最小化。

模型:

- 高斯模型
- 多项式模型
- 伯努利模型

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math
# 数据
def create_data():
    iris = load_iris()#导入iris数据集,是安德森鸢尾花卉数据集。iris_data是一个类似字典的对象。
    df = pd.DataFrame(iris.data, columns=iris.feature_names)#DataFrame生成二维数据表,列标为iris表的特征名
    df['label'] = iris.target#iris的每个样本都包含了品种信息,即目标属性(第5列,也叫target或label)
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']#df的列标
    data = np.array(df.iloc[:100, :])#将列表list或元组tuple转换为ndarray数组,iloc函数只根据行列号对数据进行索引,行到100,列为全部
    print(data)#显示数据
    return data[:,:-1], data[:,-1]

输出:
[[5.1 3.5 1.4 0.2 0. ]
[4.9 3. 1.4 0.2 0. ]
[4.7 3.2 1.3 0.2 0. ]
[4.6 3.1 1.5 0.2 0. ]
[5. 3.6 1.4 0.2 0. ]
[5.4 3.9 1.7 0.4 0. ]
[4.6 3.4 1.4 0.3 0. ]
[5. 3.4 1.5 0.2 0. ]
[4.4 2.9 1.4 0.2 0. ]
[4.9 3.1 1.5 0.1 0. ]
[5.4 3.7 1.5 0.2 0. ]
[4.8 3.4 1.6 0.2 0. ]
[4.8 3. 1.4 0.1 0. ]
[4.3 3. 1.1 0.1 0. ]
[5.8 4. 1.2 0.2 0. ]
[5.7 4.4 1.5 0.4 0. ]
[5.4 3.9 1.3 0.4 0. ]
[5.1 3.5 1.4 0.3 0. ]
[5.7 3.8 1.7 0.3 0. ]
[5.1 3.8 1.5 0.3 0. ]
[5.4 3.4 1.7 0.2 0. ]
[5.1 3.7 1.5 0.4 0. ]
[4.6 3.6 1. 0.2 0. ]
[5.1 3.3 1.7 0.5 0. ]
[4.8 3.4 1.9 0.2 0. ]
[5. 3. 1.6 0.2 0. ]
[5. 3.4 1.6 0.4 0. ]
[5.2 3.5 1.5 0.2 0. ]
[5.2 3.4 1.4 0.2 0. ]
[4.7 3.2 1.6 0.2 0. ]
[4.8 3.1 1.6 0.2 0. ]
[5.4 3.4 1.5 0.4 0. ]
[5.2 4.1 1.5 0.1 0. ]
[5.5 4.2 1.4 0.2 0. ]
[4.9 3.1 1.5 0.2 0. ]
[5. 3.2 1.2 0.2 0. ]
[5.5 3.5 1.3 0.2 0. ]
[4.9 3.6 1.4 0.1 0. ]
[4.4 3. 1.3 0.2 0. ]
[5.1 3.4 1.5 0.2 0. ]
[5. 3.5 1.3 0.3 0. ]
[4.5 2.3 1.3 0.3 0. ]
[4.4 3.2 1.3 0.2 0. ]
[5. 3.5 1.6 0.6 0. ]
[5.1 3.8 1.9 0.4 0. ]
[4.8 3. 1.4 0.3 0. ]
[5.1 3.8 1.6 0.2 0. ]
[4.6 3.2 1.4 0.2 0. ]
[5.3 3.7 1.5 0.2 0. ]
[5. 3.3 1.4 0.2 0. ]
[7. 3.2 4.7 1.4 1. ]
[6.4 3.2 4.5 1.5 1. ]
[6.9 3.1 4.9 1.5 1. ]
[5.5 2.3 4. 1.3 1. ]
[6.5 2.8 4.6 1.5 1. ]
[5.7 2.8 4.5 1.3 1. ]
[6.3 3.3 4.7 1.6 1. ]
[4.9 2.4 3.3 1. 1. ]
[6.6 2.9 4.6 1.3 1. ]
[5.2 2.7 3.9 1.4 1. ]
[5. 2. 3.5 1. 1. ]
[5.9 3. 4.2 1.5 1. ]
[6. 2.2 4. 1. 1. ]
[6.1 2.9 4.7 1.4 1. ]
[5.6 2.9 3.6 1.3 1. ]
[6.7 3.1 4.4 1.4 1. ]
[5.6 3. 4.5 1.5 1. ]
[5.8 2.7 4.1 1. 1. ]
[6.2 2.2 4.5 1.5 1. ]
[5.6 2.5 3.9 1.1 1. ]
[5.9 3.2 4.8 1.8 1. ]
[6.1 2.8 4. 1.3 1. ]
[6.3 2.5 4.9 1.5 1. ]
[6.1 2.8 4.7 1.2 1. ]
[6.4 2.9 4.3 1.3 1. ]
[6.6 3. 4.4 1.4 1. ]
[6.8 2.8 4.8 1.4 1. ]
[6.7 3. 5. 1.7 1. ]
[6. 2.9 4.5 1.5 1. ]
[5.7 2.6 3.5 1. 1. ]
[5.5 2.4 3.8 1.1 1. ]
[5.5 2.4 3.7 1. 1. ]
[5.8 2.7 3.9 1.2 1. ]
[6. 2.7 5.1 1.6 1. ]
[5.4 3. 4.5 1.5 1. ]
[6. 3.4 4.5 1.6 1. ]
[6.7 3.1 4.7 1.5 1. ]
[6.3 2.3 4.4 1.3 1. ]
[5.6 3. 4.1 1.3 1. ]
[5.5 2.5 4. 1.3 1. ]
[5.5 2.6 4.4 1.2 1. ]
[6.1 3. 4.6 1.4 1. ]
[5.8 2.6 4. 1.2 1. ]
[5. 2.3 3.3 1. 1. ]
[5.6 2.7 4.2 1.3 1. ]
[5.7 3. 4.2 1.2 1. ]
[5.7 2.9 4.2 1.3 1. ]
[6.2 2.9 4.3 1.3 1. ]
[5.1 2.5 3. 1.1 1. ]
[5.7 2.8 4.1 1.3 1. ]]

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
print(X_test[0], y_test[0])#显示测试集的第一个

输出:
[5.8 2.6 4. 1.2] 1.0

class NaiveBayes:#定义类朴素贝叶斯
    def __init__(self):# 创建类中的函数,也叫方法
        self.model = None

    # 数学期望
    @staticmethod
    def mean(X):
        return sum(X) / float(len(X))

    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))#pow(x,n) ,即计算 x 的 n 次幂函数。

    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):#高斯概率密度函数
        exponent = math.exp(-(math.pow(x - mean, 2) /
                              (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent

    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries

    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'

    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        return probabilities

    # 预测类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1])[-1][0]
        return label

    def score(self, X_test, y_test):#计算得分率
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1

        return right / float(len(X_test))

model = NaiveBayes()

model.fit(X_train, y_train)

print(model.predict([4.4,  3.2,  1.3,  0.2]))#预测该点的值

print(model.score(X_test, y_test))#得分率

输出:
0.0

1.0

from sklearn.naive_bayes import GaussianNB#先验为高斯分布的朴素贝叶斯
#from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 先验为伯努利分布的朴素贝叶斯,先验为多项式分布的朴素贝叶斯。

clf = GaussianNB()
clf.fit(X_train, y_train)

print(clf.score(X_test, y_test))#得分率

print(clf.predict([[4.4,  3.2,  1.3,  0.2]]))#预测该点的值

输出:
1.0

[0.]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值