代码随想录刷题day57|回文子串&最长的回文子序列


day57学习内容

day57主要内容

  • 2个字符串的删除操作
  • 最长的回文子串

声明
本文思路和文字,引用自《代码随想录》


一、回文子串

647.原题链接

1.1、动态规划五部曲

1.1.1、 确定dp数组(dp table)以及下标的含义

  • dp[i][j]是一个布尔值,用于表示子字符串s[i...j]是否为回文。如果dp[i][j]true,则说明从索引ij的子字符串是回文。

1.1.2、确定递推公式

  • 基本情况
    • i == j时,s[i...j]是单个字符,显然是回文。
    • j == i + 1时,如果s[i] == s[j],则s[i...j]是由两个相同字符组成的回文。
  • 递推关系
    • 对于j > i + 1,如果s[i] == s[j]dp[i+1][j-1]true(即去除两端字符后的子字符串是回文),则s[i...j]也是回文。

或者这么理解
在每次循环中,会判断当前子字符串s[i...j]是否是回文:

  • 基本条件 (if (chars[i] == chars[j])): 如果两端的字符相同,进一步判断是否构成回文。
    • 情况一和情况二 (if (j - i <= 1)): 如果ij相同或者是相邻的位置(即子字符串长度为1或2),则这个子字符串是回文。
    • 情况三 (else if (dp[i + 1][j - 1])): 如果不是上述情况,但内部的子字符串s[i+1...j-1]是回文(由dp[i+1][j-1]true表示),那么s[i...j]也是回文。

在每个条件成立时,都会将dp[i][j]设置为true并将结果计数器result加一。

1.1.3、 dp数组如何初始化

  • 初始状态:由于所有的布尔值在Java中默认初始化为falsedp数组最开始全部为false。在遍历过程中,我们会根据回文的条件来更新特定的dp[i][j]true

1.1.4、确定遍历顺序

  • 外层循环从字符串的末尾开始向前遍历(即ilen-1降至0)。这样做确保当我们检查dp[i][j]是否为回文时,dp[i+1][j-1](即内部子字符串)的值已经被确定。
  • 内层循环i开始向字符串的末尾遍历(即ji增至len-1)。这种方式可以确保每次检查的都是从位置i开始的所有可能的子字符串。

1.1.5、输出结果

  • 结果result是一个整数,用于计数整个字符串中所有的回文子串。每次当找到一个回文(即dp[i][j]被设置为true)时,result就增加1。最终,方法返回result值,这就是字符串s中所有回文子串的数量。

1.2、代码

class Solution {
    public int countSubstrings(String s) {
        // 将输入字符串转换为字符数组,便于单个字符访问
        char[] chars = s.toCharArray();
        // 获取字符串的长度
        int len = chars.length;
        // 初始化一个二维布尔数组来存储回文状态,dp[i][j]为true表示s[i...j]是回文
        boolean[][] dp = new boolean[len][len];
        // 用于计数回文子串的数量
        int result = 0;

        // 外层循环:从字符串的末尾开始向前遍历
        for (int i = len - 1; i >= 0; i--) {
            // 内层循环:从当前字符位置向字符串的末尾遍历
            for (int j = i; j < len; j++) {
                // 检查两端的字符是否相同
                if (chars[i] == chars[j]) {
                    // 检查是否是最基本的回文条件:单个字符或两个相同的字符
                    if (j - i <= 1) {
                        // 如果是,标记为回文并计数
                        dp[i][j] = true;
                        result++;
                    } else if (dp[i + 1][j - 1]) { // 检查内部子字符串是否是回文
                        // 如果内部子字符串也是回文,那么整个字符串也是回文
                        dp[i][j] = true;
                        result++;
                    }
                }
            }
        }
        // 返回回文子串的总数
        return result;
    }
}

二、最长的回文子串

516.原题链接

2.1、动态规划五部曲

2.1.1、 确定dp数组(dp table)以及下标的含义

  • dp[i][j]表示字符串中从索引i到索引j的子字符串的最长回文子序列的长度。

2.1.2、确定递推公式

  • 字符相等的情况
    s[i]等于s[j]时,意味着我们可以在子字符串s[i+1...j-1]的最长回文子序列的两端分别添加s[i]s[j]。因为两端字符相等且已经构成了s[i+1...j-1]的回文子序列的两端,这会形成一个新的更长的回文子序列。这就是为什么递推公式是dp[i][j] = dp[i+1][j-1] + 2

  • 字符不等的情况
    s[i]不等于s[j]时,意味着s[i]s[j]不能同时被用来形成一个更长的回文子序列。在这种情况下,我们有两个选择:

    1. 忽略字符s[i],考虑子字符串s[i+1...j]
    2. 忽略字符s[j],考虑子字符串s[i...j-1]
      因此,我们需要比较这两个子问题的解,选取其中较大的一个,递推公式为dp[i][j] = max(dp[i+1][j], dp[i][j-1])

递推公式的实现

  • 在初始化时,每个单字符子字符串自身是一个长度为1的回文子序列,所以dp[i][i] = 1
  • 对于每一对ij(其中i <= j),根据上述规则更新dp[i][j]

示例
考虑字符串“cbbd”:

  • 如果i=0j=3,且s[0] != s[3],则考虑dp[1][3]dp[0][2],取最大值。

没有废话的版本

  • 当字符相等时:如果s[i]s[j]相等,这意味着我们可以在内部子字符串s[i+1...j-1]的最长回文子序列的基础上加上这两个相等的字符,形成更长的回文子序列。因此,递推公式是dp[i][j] = dp[i+1][j-1] + 2
  • 当字符不相等时:如果s[i]s[j]不相等,那么最长的回文子序列要么不包含s[i],要么不包含s[j]。因此,递推公式是dp[i][j] = max(dp[i+1][j], dp[i][j-1])

2.1.3、 dp数组如何初始化

  • 数组定义:定义了一个二维数组dp,其维度为len+1 x len+1,其中len是输入字符串s的长度。这个数组用来存储所有子字符串的最长回文子序列的长度。
  • 基本回文:每个单字符都是一个回文子序列,所以在遍历开始前,将对角线上的dp[i][i]初始化为1,即dp[i][i] = 1。这表示每个由单个字符组成的子字符串都至少有一个字符的回文子序列。

2.1.4、确定遍历顺序

  • 外层循环i从字符串的最后一个字符开始,递减到第一个字符。这种从后向前的遍历方式是为了保证当处理dp[i][j]时,dp[i+1][j-1]已经被计算,符合动态规划的依赖顺序。
  • 内层循环ji+1开始,递增到字符串的末尾。这样可以确保我们总是在处理长度大于1的子字符串,并且当i固定时,我们从较短的子字符串逐渐处理到较长的子字符串。

2.1.5、输出结果

  • 输出结果:整个字符串的最长回文子序列长度存储在dp[0][len-1]中,其中len是字符串s的总长度。这个值在所有计算完成后直接返回,即为所求的整个字符串的最长回文子序列的长度。

2.2、代码

public class Solution {
    public int longestPalindromeSubseq(String s) {
        // 获取输入字符串的长度
        int len = s.length();

        // 创建一个二维数组dp,用于存储子字符串的最长回文子序列长度
        int[][] dp = new int[len][len];

        // 从字符串的最后一个字符开始,反向遍历,确保计算dp[i][j]时dp[i+1][j-1]已经被计算过
        for (int i = len - 1; i >= 0; i--) {
            // 单个字符总是回文子序列,长度为1
            dp[i][i] = 1;

            // 从i+1开始向右遍历,计算所有可能的子字符串
            for (int j = i + 1; j < len; j++) {
                // 如果两端的字符相同,可以在dp[i+1][j-1]的基础上两端各加一个字符
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    // 如果两端字符不同,取不包含当前字符i或字符j的子字符串的最长回文子序列的最大值
                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }

        // dp[0][len-1]存储了整个字符串的最长回文子序列长度
        return dp[0][len - 1];
    }
}

2.2.1、如何理解dp[i][j] = dp[i + 1][j - 1] + 2;

当我们查看字符串的一个子序列,假设它的起始索引是 i,结束索引是 j,我们需要决定s[i...j]的最长回文子序列是什么。在递推公式dp[i][j] = dp[i+1][j-1] + 2;中:

  • dp[i+1][j-1]: 这部分代表子字符串s[i+1...j-1]的最长回文子序列的长度。即当我们去掉当前考虑的子字符串两端的字符后,内部子字符串的最长回文子序列长度。

  • 加2的逻辑:如果s[i]s[j]字符相同,这意味着我们可以在s[i+1...j-1]的最长回文子序列的基础上,在两端各加上字符s[i]s[j],从而形成一个更长的回文子序列。因此,整个子字符串s[i...j]的最长回文子序列长度会是内部子字符串s[i+1...j-1]的长度加2(加上两端相同的字符)。

举个例子

假设有字符串 “cbbd”,我们想知道子字符串 “bb” 的最长回文子序列。

  1. 初始化

    • dp[i][i] 对于所有 i 都设为 1,因为每个单独的字符都是长度为1的回文子序列。
  2. 填充动态规划表

    • 当我们检查 “bb”(即 i=1, j=2)时,因为两端的字符相同(s[1]s[2] 都是 ‘b’)。
    • 查看去掉两端的子字符串 “b[1+1…2-1]”,即 dp[2][1],但这是无效的区间,其基本长度为0(在实际初始化中可能直接被视为基础情况)。
    • 由于两端字符相同,我们可以在这个基础上前后各添加一个 ‘b’,因此,dp[1][2] 的值应更新为 0 + 2 = 2

总结

1.感想

  • 动态规划了终于结束了。。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值