有限元基础教程——2D杆单元(Matlab算例)


前言

有限元基础教程(曾攀)Matlab3.2.5算例

函数文件


将该文件保存为Bar2D2NodeFunc.m文件

function Bar2D2Node=Bar2D2NodeFunc
Bar2D2Node.Stiffness=@Bar2D2Node_Stiffness;
Bar2D2Node.Assembly=@Bar2D2Node_Assembly;
Bar2D2Node.Stress=@Bar2D2Node_Stress;
Bar2D2Node.Forces=@Bar2D2Node_Forces;
end
%%%%% Bar2D2Node %%begin%%%%
function k=Bar2D2Node_Stiffness(E,A,x1,y1,x2,y2,alpha)
%该函数计算单元的刚度矩阵
%输入弹性模量E、横截面积A
%输入第一个节点坐标(x1,y1)、第二个节点坐标(x2,y2)和角度alpha(单位是度)
%输出单元刚度矩阵k(4*4)
%----------------
L=sqrt((x2-x1)^2+(y2-y1)^2);
x=alpha*pi/180;
C=cos(x);
S=sin(x);
k=E*A/L*[C*C C*S -C*C -C*S;C*S S*S -C*S -S*S;-C*C -C*S C*C C*S;-C*S -S*S C*S S*S];
end
%%%%%%%%%%%%%%%%%%%
function z=Bar2D2Node_Assembly(KK,k,i,j)
%该函数进行单元刚度矩阵的组装
%输入单元刚度矩阵k,单元的节点编号i,j
%输出整体刚度矩阵KK
%-----------------
DOF(1)=2*i-1;
DOF(2)=2*i;
DOF(3)=2*j-1;
DOF(4)=2*j;
for n1=1:4
    for n2=1:4
        KK(DOF(n1),DOF(n2))=KK(DOF(n1),DOF(n2))+k(n1,n2);
    end
end
z=KK;
end
%---------------
function stress=Bar2D2Node_Stress(E,x1,y1,x2,y2,alpha,u)
%该函数计算单元的应力
%输入弹性模量E、第一个节点坐标(x1,y1)和第二个节点坐标(x2,y2)
%输入角度alpha(单位是度)和单位节点位移向量u
%返回单元应力值stress
%------------------------
L=sqrt((x2-x1)^2+(y2-y1)^2);
x=alpha*pi/180;
C=cos(x);
S=sin(x);
stress=E/L*[-C -S C S]*u;
end
%--------------------
%%%%%%%%%%%%%%%%%%%%%%%%%
function forces=Bar2D2Node_Forces(E,A,x1,y1,x2,y2,alpha,u)
%该函数计算单元节点力向量
%输入弹性模量E和横截面积A
%输入第一个节点坐标(x1,y1)、第二个节点坐标(x2,y2)和角度alpha(单位是度)
%输入单元节点位移向量u
%返回单元节点力forces
%----------------------------
L=sqrt((x2-x1)^2+(y2-y1)^2);
x=alpha*pi/180;
C=cos(x);
S=sin(x);
forces=E*A/L*[-C -S C S]*u;
end
%%%%%%%%% Bar2D2Node %%end%%%%%%%%%

      

函数调用

E=2.95e11;
A=0.0001;
x1=0;
y1=0;
x2=0.4;
y2=0;
x3=0.4;
y3=0.3;
x4=0;
y4=0.3;
alpha1=0;
alpha2=90;
alpha3=atan(0.75)*180/pi;
Bar2D2Node=Bar2D2NodeFunc;
k1=Bar2D2Node.Stiffness(E,A,x1,y1,x2,y2,alpha1)
k2=Bar2D2Node.Stiffness(E,A,x2,y2,x3,y3,alpha2)
k3=Bar2D2Node.Stiffness(E,A,x1,y1,x3,y3,alpha3)
k4=Bar2D2Node.Stiffness(E,A,x4,y4,x3,y3,alpha1)
KK=zeros(8);
KK=Bar2D2Node.Assembly(KK,k1,1,2);
KK=Bar2D2Node.Assembly(KK,k2,2,3);
KK=Bar2D2Node.Assembly(KK,k3,1,3);
KK=Bar2D2Node.Assembly(KK,k4,4,3)

k=KK([3 5 6],[3 5 6])
p=[20000;0;-25000];
u=k\p

q=[0 0 u(1) 0 u(2) u(3) 0 0]';
P=KK*q

u1=[q(1);q(2);q(3);q(4)]
stress1=Bar2D2Node.Stress(E,x1,y1,x2,y2,alpha1,u1)
u2=[q(3);q(4);q(5);q(6)]
stress2=Bar2D2Node.Stress(E,x2,y2,x3,y3,alpha2,u2)
u3=[q(1);q(2);q(5);q(6)]
stress3=Bar2D2Node.Stress(E,x1,y1,x3,y3,alpha3,u3)
u4=[q(7);q(8);q(5);q(6)]
stress4=Bar2D2Node.Stress(E,x4,y4,x3,y3,alpha1,u4)




运行结果

在这里插入图片描述
除此之外,若运行过程可以循环,可以通过eval函数简化(该算例不适用)
在这里插入图片描述

总结

将多个函数文件保存在同一个m文件中,同时若计算过于繁琐且有规律则可以使用eval函数

本书的第1 章简要地介绍了 MATLAB 的基本知识和编程中常用的语句及函数 , 使者能够阅读本书各章节中的程序。 第2 章系统地介绍了有限元的理论基础———微分方程的近似解法。 这部分内容在一的有限元书籍中是很少介绍的 , 它不仅可以使我们了解有限元的发展过程 , 也能够使读者加深对有限元方法的理解。 第3 章介绍了广义坐标有限元方法。 它是物理坐标下的直接方法 , 读者可以通过该章的学习了解和掌握有限元方法的一般步骤。 第4 章简要介绍了有限元编程方法。 与大多数有限元书籍不同的是 , 用其他高级语言编写有限元程序时所需的一般编程技巧在 MATLAB 中不再需要 , 因此 , 本书不再赘述。 第5 章详细讨论了构造单元和插值函数的原则和方法 , 并着重讨论了在实际中有着广泛应用的等参数单元的构造方法和表达格式 , 以及与广义坐标单元的变换方法。 第6 章和第7 章讨论了杆系结构有限元问题。由于杆系结构与一般的二维和三维弹性体结构有较大的区别 , 因此 , 杆系结构的单元及其插值函数是区别于一般二维和三维单元的特殊单元 , 同时 , 桁架的杆单元和框架的梁单元也是完全不同的两类单元。 第8 章详细讨论了一般弹性力学问题的有限元方法 , 包括稳定问题和动力学问题。 第9 章讨论了板问题的有限元方法 , 其中介绍了多种类型和不同位移模式的板单元 ,包括用于复合材料结构的层状单元。 第10 章介绍了系统建模、 线性系统分析及结构振动控制的基础知识 , 并详细地介绍了如何用 MATLAB 来实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yangtze20

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值