题目
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Follow up:
Could you do this in-place?
思想1
首先对于将矩阵旋转90°,可以将比较旋转前后的坐标变换。对于原矩阵matrix[n][n],和旋转后得到的矩阵res[n][n],我们可以得到res[i][j]=matrix[n - j-1][i],根据该公式即可以求出旋转后的矩阵,空间、时间间复杂度均为O(n*n)。
代码1
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int len = matrix.size();
vector<vector<int> >res;
vector<int >temp;
for (int i = 0; i < len; i++)
{
for (int j = 0; j < len; j++)
{
temp.push_back(matrix[len - j-1][i]);
}
res.push_back(temp);
temp.clear();
}
for (int i = 0; i < len; i++)
{
for (int j = 0; j < len; j++)
{
matrix[i][j] = res[i][j];
}
}
}
};
思想2
对于将矩阵旋转90°,我们可以先将原矩阵做对称操作,然后再对每一行做逆转即可。
代码2:
void rotate2(vector<vector<int>>& matrix) {
int len = matrix.size();
for (int i = 0; i < len; i++)
{
for (int j = i+1; j < len; j++)
{
swap(matrix[i][j],matrix[j][i]);
}
}
for (int i = 0; i < len; i++)
{
reverse(matrix[i].begin(), matrix[i].end());
}
}