斜率优化dp,通俗来说就是用斜率优化dp()
洛谷P3628 特别行动队(斜率优化dp)
题意:给出一串数字,要求你进行分割,设分割成的每块的和为 x x x,要求所有块的 A x 2 + B x + C Ax^2+Bx+C Ax2+Bx+C最大,求这个最大值。
很容易写出一般 d p dp dp式子:
设j为i前面一块的最后一个位置。(以下式子不含 m a x max max,因为大括号公式打不上。。)
f [ i ] = f [ j ] + A ( s u m i − s u m j ) 2 + B ( s u m i − s u m j ) + C f[i]=f[j]+A(sum_i-sum_j)^2+B(sum_i-sum_j)+C f[i]=f[j]+A(sumi−sumj)2+B(sumi−sumj)+C
然后考虑斜率优化。。。好耶
有些人喜欢设两个j观察满足什么条件时可以更新,但是那样不是很能体现斜率。
所以我们就直接在原式子上进行操作。
以下为过程:
先拆开:
f [ i ] = f [ j ] + A ⋅ s u m i 2 + A ⋅ s u m j 2 − 2 A ( s u m i ⋅ s u m j ) + B ⋅ s u m i − B ⋅ s u m j + C f[i]=f[j]+A·sum_i^2+A·sum_j^2-2A(sum_i·sum_j)+B·sum_i-B·sum_j+C f[i]=f[j]+A⋅sumi2+A⋅sumj2−2A(sumi⋅sumj)+B⋅sumi−B⋅sumj+C
然后把不变的提出来,顺便移项:
f [ i ] − A ⋅ s u m i 2 − B ⋅ s u m i − C = f [ j ] + A ⋅ s u m j 2 − 2 A ( s u m i ⋅ s u m j ) − B ⋅ s u m j f[i]-A·sum_i^2-B·sum_i-C=f[j]+A·sum_j^2-2A(sum_i·sum_j)-B·sum_j f[i]−A⋅sumi2−B⋅sumi−C=f[j]+A⋅sumj2−2A(sumi⋅sumj)−B⋅sumj
我们要求最大的 f [ i ] f[i] f[i],所以要让式子的左边最大。
设:
B = f [ i ] − A ⋅ s u m i 2 − B ⋅ s u m i − C B=f[i]-A·sum_i^2-B·sum_i-C B=f[i]−A⋅sumi2−B⋅sumi−C(就是式子的左边)
K = 2 A ⋅ s u m i K=2A·sum_i K=2A⋅sumi
X = s u m j X=sum_j X=sumj
Y = f [ j ] + A ⋅ s u m j 2 − B ⋅ s u m j Y=f[j]+A·sum_j^2-B·sum_j Y=f[j]+A⋅sumj2−B⋅sumj
然后代入就变成了 Y = K X + B Y=KX+B Y=KX+B
我们要求 B B B最大,相当于在 x − y x-y x−y的图像上找到两个点,使所连直线的纵截距最大。
所以维护一个上凸就好了。
真的是非常的简单呢!!!(指自己推的时候写了一整页)
下面是代码。。。
温馨提示,不知道哪里要开 l o n g long long l o n g long long就全开了,只要内存不超就行。
#include<bits/stdc++.h>
using namespace std;
long long n,A,B,C,a[1000010],q[1000010];
long long f[1000010];
double pd(long long x,long long y){
return double((f[x]-f[y]+A*(a[x]*a[x]-a[y]*a[y])+B*(a[y]-a[x]))/double(2*A*(a[x]-a[y])));
}
int main(){
scanf("%lld%lld%lld%lld",&n,&A,&B,&C);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
a[i]+=a[i-1];//原数组用不上,直接变成前缀和
}
int hh=0,tt=0;
for(int i=1;i<=n;i++){
while(hh<tt&&pd(q[hh],q[hh+1])<=a[i]*1.0) hh++;
f[i]=f[q[hh]]+A*(a[i]-a[q[hh]])*(a[i]-a[q[hh]])+B*(a[i]-a[q[hh]])+C;
while(hh<=tt&&pd(q[tt-1],q[tt])>=pd(q[tt],i)) tt--;
q[++tt]=i;
}
printf("%lld",f[n]);
}