梯度起源网络(论文解释与实时编码)

这段文字主要介绍了一篇来自杜伦大学的论文,该论文提出了一种新的隐式生成模型,能够快速学习潜在表示,而无需显式编码器。

作者首先概述了论文的主题,并解释了为什么很多人对论文内容感到困惑。作者认为,论文利用了潜在变量的梯度来获取潜在编码,这是一种比较奇特的公式。

接下来,作者介绍了隐式生成模型的概念,尤其是论文中使用的SIREN(隐式表示网络)。SIREN 是一种神经网络,用于表示单个数据点,例如图像。作者解释了显式表示和隐式表示的区别,以及SIREN的工作原理。

最后,作者简单介绍了论文的摘要内容,并强调了论文的创新之处在于能够快速学习潜在表示,而无需显式编码器。

总体而言,这段文字为读者提供了一个对论文的简要概述,并解释了论文的核心概念和创新之处。虽然作者承认自己对论文的理解可能存在偏差,但这段文字仍然为读者提供了对论文的初步了解。

用于隐式表示的神经网络,例如 SIREN,在对自然信号建模方面非常成功。然而,在经典方法中,每个数据点都需要拟合自己的神经网络。本文通过将数据点的潜在向量引入 SIREN,将隐式表示扩展到整个数据集。有趣的是,本文表明,通过简单地查看表示函数中零向量的负梯度,可以获得这些潜在向量,而无需显式编码器。大纲:0:00 - 简介和概述2:10 - 隐式生成模型5:30 - 隐式表示数据集11:00 - 梯度起源网络23:55 - 与梯度下降的关系28:05 - 操纵他们的代码37:40 - 隐式编码器38:50 - 将 GON 用作分类器40:55 - 实验和结论论文:https://arxiv.org/abs/2007.02798代码:https://github.com/cwkx/GON项目页面:https://cwkx.github.io/data/GON/我关于 SIREN 的视频:https://youtu.be/Q5g3p9Zwjrk摘要:本文提出了一种新型隐式生成模型,该模型能够快速学习潜在表示,而无需显式编码器。这是通过一个隐式神经网络实现的,该网络将坐标空间中的点以及一个初始化为零的潜在向量作为输入。数据拟合损失相对于该零向量的梯度被联合优化,以充当捕获数据流形的潜在点。结果显示出与自动编码器类似的特征,但参数更少,并且具有隐式表示网络的优势。

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YannicKilcher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值