时间复杂度和空间复杂度

序:

在面试的时候,经常会询问到算法的题目,尤其是后端的面试,去一些互联网的大厂。那么解析一个题目的算法又很多种,面试官如何判断你这个算法是不是最优的算法。没错,判断一个算法的优秀程度,就是使用时间复杂度。

A.时间复杂度怎么计算?

个人总结出三个计算时间复杂度的规律

1、找到执行次数最多的语句

2、语句执行语句的数量级

3、用O表示结果

计算时间复杂度的3个出发点,掌握这三个出发点,那么一向搞不懂的时间复杂度就可以迎刃而解啦。

B.常用的时间复杂度所耗费的时间从小到大依次是:

O(1 )< O(logn) < O(n) < O(n*logn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

C.常见的时间复杂度例子

git地址:https://github.com/startYao/25-years-old-effort-basics-demo-01.git

1.对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个
循环的时间复杂度为 O(n×m)。

    /**
     * O(1)
     */
    private static void complexForO1() {
        System.out.println("O(1)");
    }

    /**
     * O(n)
     */
    private static void complexForOn(int n) {
        for (int i = 1; i < n; i++) {
            System.out.println("O(n)");
        }
    }

此时时间复杂度为 O(n × 1),即 O(n)。

2.对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c...,则这个循环的时间复杂度为 O(n×a×b×c...)。分析的时候应该由里向外分析这些循环。

    /**
     * O(n^2)  demo1
     */
    private static void complexForOnSquare1(int n) {
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < n; j++) {
                System.out.println("O(n^2)");
            }
        }
    }

此时时间复杂度为 O(n × n × 1),即 O(n^2)。

3.对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。

    /**
     * O(n^2)  demo2
     */
    private static void complexForOnSquare2(int n) {
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < n; j++) {
                System.out.println("O(n^2)");
            }
        }

        for (int i = 1; i < n; i++) {
            System.out.println("O(n)");
        }
    }

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

4.对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。

    /**
     * O(n^2)  demo3
     */
    private static void complexForOnSquare3(int n) {
        if (n >= 0) {
            // 第一条路径时间复杂度为 O(n^2)
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    System.out.println("O(n^2)");
                }
            }
        } else {
            // 第二条路径时间复杂度为 O(n)
            for (int j = 0; j < n; j++) {
                System.out.println("O(n)");
            }
        }
    }

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

5.O(log(n))

    /**
     * O(log(n))
     *
     * 假设循环次数为 t,则循环条件满足 2^t < n。
     * 可以得出,执行次数t = log(2)(n),即 T(n) = log(2)(n),可见时间复杂度为 O(log(2)(n)),即 O(log n)
     */
    private static void complexForOnLog(int n) {
        for (int i = 1; i < n; i++) {
            i *= 2;
            System.out.println("O(log(n))");
        }
    }

6.O(2^n)

    /**
     * O(2^n)
     * 显然运行次数,T(0) = T(1) = 1,同时 T(n) = T(n - 1) + T(n - 2) + 1,这里的 1 是其中的加法算一次执行。
     * 显然 T(n) = T(n - 1) + T(n - 2) 是一个斐波那契数列,通过归纳证明法可以证明,当 n >= 1 时 T(n) < (5/3)^n,同时当 n > 4 时 T(n) >= (3/2)^n。
     * 所以该方法的时间复杂度可以表示为 O((5/3)^n),简化后为 O(2^n)
     */
    private static int complexForO2SquareN(int n) {
        if (n <= 1) {
            return 1;
        } else {
            return complexForO2SquareN(n - 1) + complexForO2SquareN(n - 2);
        }
    }

剩余的,后续待补充...

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值