POJ 3666

离散化+dp,好神奇的做法,将一个序列a变成b,并要求每一个元素|a[i] - b[i]|的绝对值尽量小,求最小的绝对值之和。。

如果能想到离散化,这就是一道非常水的题目了。。

因为元素最大为INF,因此不能作为下标,如果将所有值离散化,就可以进行状态转移了。

首先将原来数组排序去重后存到一个t数组里,然后dp[i][j]中的第一维i代表当前到了第几个元素,j表示最后一个数的大小,因为要满足非递减关系,所以只取前一项中最后一个数小于等于当前j的最小值就行。

状态转移:dp[i][j] = abs(t[j] - a[i]) + dp[i - 1][j]。

下面附代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 2000 + 10;
int a[maxn];
int b[maxn];
long long dp[maxn][maxn];
int n;
int nn;
const long long INF = 0x7fffffffffffffff;
int main()
{
    while(~scanf("%d", &n))
    {
        for(int i = 0; i < n; ++i)
        {
            scanf("%d", &a[i]);
            b[i] = a[i];
        }
        sort(b, b + n);
        nn = unique(b, b + n) - b;
        memset(dp, 0, sizeof(dp));
        for(int i = 0; i < nn; ++i)
            dp[0][i] = abs(a[0] - b[i]);
        for(int i = 1; i < n; ++i)
        {
            long long MIN = dp[i - 1][0];
            dp[i][0] = abs(a[i] - b[0]) + MIN;
            for(int j = 1; j < nn; ++j)
            {
                MIN = min(dp[i - 1][j], MIN);
                dp[i][j] = abs(a[i] - b[j]) + MIN;
            }
        }
        long long MIN = INF;
        for(int i = 0; i < nn; ++i)
        {
            MIN = min(MIN, dp[n - 1][i]);
        }
        printf("%I64d\n", MIN);
    }

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值