Yavv123
码龄8年
关注
提问 私信
  • 博客:682
    682
    总访问量
  • 暂无
    原创
  • 433,860
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2017-05-09
博客简介:

Yavv123的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得0次收藏
创作历程
  • 3篇
    2019年
TA的专栏
  • 随便写写
    3篇
兴趣领域 设置
  • 前端
    javascriptcss
  • 学习和成长
    面试
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ml

1、信息论基础熵:信息熵是衡量随机变量分布的混乱程度,是随机分布各事件发生的信息量的期望值,随机变量的取值个数越多,状态数也就越多,信息熵就越大,混乱程度就越大。当随机分布为均匀分布时,熵最大;信息熵推广到多维领域,则可得到联合信息熵;条件熵表示的是在 X 给定条件下,Y 的条件概率分布的熵对 X的期望。联合熵:条件熵:条件熵 H(Y|X) 表示在已知随机变量 X 的条件下随机变量 Y 的不...
转载
发布博客 2019.04.02 ·
236 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ml

1、逻辑回归与线性回归的区别区别而不大,逻辑回归多了一个Sigmoid函数,使样本能映射到[0,1]之间的数值,用来做分类问题。2、逻辑回归的原理逻辑回归是利用回归类似的方法来解决分类问题。假设有一个二分类问题,输出y{0,1},而线性模型(下文将展示这个模型)的的预测值z是实数值,我们希望找到一个阶跃函数将实数z映射为{0,1},这样我们就能很好的处理分类问题了。那么逻辑回归中是使用什么函...
转载
发布博客 2019.04.01 ·
209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ml

线性回归算法梳理1、一些概念2、线性回归的原理4、sklearn参数详解1、一些概念有监督:监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。在人对事物的认...
转载
发布博客 2019.03.29 ·
237 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏