OceanProo
码龄5年
  • 66,949
    被访问
  • 84
    原创
  • 506,791
    排名
  • 36
    粉丝
关注
提问 私信

个人简介:花即花雾即雾

  • 加入CSDN时间: 2017-05-16
博客简介:

YeChao3的博客

查看详细资料
个人成就
  • 获得28次点赞
  • 内容获得6次评论
  • 获得175次收藏
创作历程
  • 1篇
    2019年
  • 83篇
    2018年
成就勋章
TA的专栏
  • python
    65篇
  • database
    3篇
  • Linux
    9篇
  • web
    1篇
  • docker
    1篇
  • html
  • 前端
    4篇
  • 后端
    3篇
  • 数据分析
    10篇
  • 爬虫
    7篇
  • 机器学习
    20篇
  • English
兴趣领域 设置
  • 测试
    selenium
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python之PEP

前言或许你是一个初入门Python的小白,完全不知道PEP是什么。又或许你是个学会了Python的熟手,见过几个PEP,却不知道这玩意背后是什么。那正好,本文将系统性地介绍一下PEP,与大家一起加深对PEP的了解。目前,国内各类教程不可胜数,虽然或多或少会提及PEP,但笼统者多、局限于某个PEP者多,能够详细而全面地介绍PEP的文章并不多。本文的目的是:尽量全面地介绍PEP是什么,告诉...
原创
发布博客 2019.10.30 ·
136 阅读 ·
0 点赞 ·
0 评论

机器学习完整流程

目录1.项目概述1.1.划定问题1.2.选择性能指标1.3.核实假设2.获取数据2.1.创建工作空间2.2.下载数据2.3.快速查看数据结构2.4.创建测试集3.数据探索并可视化数据,发现规律3.1.查找关联3.2.属性组合试验4.为机器学习模型学习准备数据4.1.数据清洗4.2.处理文本和类别属性4.3.自定义转换器4.4.特征...
原创
发布博客 2018.11.29 ·
984 阅读 ·
0 点赞 ·
1 评论

python之scikit-learn

目录特征工程选择模型调整模型模型融合官方文档:http://scikit-learn.org/stable/# input--模型-output数据分析是为了发现规则数据分析--数据挖掘和机器学习,算法相同推荐系统语音识别--科大讯飞,百度垄断,比较成熟,自然语言的分支机器视觉--卷积神经网络,图像识别,图片搜索,目标检测(无人驾驶)NLP-...
原创
发布博客 2018.11.28 ·
187 阅读 ·
0 点赞 ·
0 评论

卷积神经网络

从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的:那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。 卷积神经网络的层级结构      • 数据输入层/ Input layer  • 卷积计算层/ CONV layer  • ReLU激励层 /...
原创
发布博客 2018.11.27 ·
318 阅读 ·
0 点赞 ·
0 评论

TF-IDF

文本处理算法:分词后根据词频处理文本TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF意思是词频(Term Frequency),IDF意思是逆文本频率指数(Inverse Document Frequency)。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的...
原创
发布博客 2018.11.27 ·
103 阅读 ·
0 点赞 ·
0 评论

推荐系统

jaccard系数:协同过滤:最简单、最基本的算法LFM(Latent Factor Model)隐语义模型是最近几年推荐系统领域最为热门的研究话题,它的核心思想是通过隐含特征(Latent Factor)联系用户兴趣和物品。那这种模型跟ItemCF或UserCF有什么不同呢?这里可以做一个对比:对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物...
原创
发布博客 2018.11.27 ·
97 阅读 ·
0 点赞 ·
0 评论

聚类

无监督学习,没有y值的算法多用于文章聚类,作为辅助算法,辅助监督学习预测 K-MEANS:K均值聚类算法,使用最广泛的聚类算法,也可作为其他算法的基础,对初始值太敏感,不保证达到全局最优解层级聚合:凝聚和分裂方法:abcde,ab聚合后,只能再聚为abc,不会聚成bcDBSCAN:一种基于密度的聚类方法,对噪声不敏感轮廓系数:??距离:欧式距离、满哈距离,与玄距离 ...
原创
发布博客 2018.11.26 ·
80 阅读 ·
0 点赞 ·
0 评论

主成分分析

特征过多-过拟合,特征灾害特征相关性高-数据冗余异常值-噪声,缓解-消除不了的特征选择-降维特征分解的特征值或者特征和训练数据的特征没有关系,只是名称相同...
原创
发布博客 2018.11.26 ·
98 阅读 ·
0 点赞 ·
0 评论

线性回归模型完整案例

发布资源 2018.11.24 ·
ipynb

python之Pillow(PIL Fork)

官网:https://pillow.readthedocs.io/en/5.3.x/handbook/tutorial.htmlPython Imaging Library中最重要的类是 Image类,它在模块中定义,具有相同的名称。您可以通过多种方式创建此类的实例; 通过从文件加载图像,处理其他图像或从头开始创建图像。要从文件加载图像,请使用模块中的open()函数Image:&g...
原创
发布博客 2018.11.23 ·
325 阅读 ·
0 点赞 ·
0 评论

人工神经网络

 目录简介计算过程scikit-learn实现简介非线性问题:异或:逻辑与,非线性问题转换为线性问题:即所以曲线看成无数小线段组成playground--体验神经网络模型归一化:所有数值减小,比如X_train/100也是归一化激活函数:支持向量机:不支持大数据,因为算量大,数据量大的话计算时间太长计算过程scikit-learn实现sklearn...
原创
发布博客 2018.11.23 ·
168 阅读 ·
0 点赞 ·
0 评论

支持向量机

目录简介计算过程scikit-learn实现简介支持向量机(SVM,Support Vector Machine)是一组用于分类(SVM), 回归(SVR)和异常值检测的监督学习方法。支持向量机的优点是:在高维空间有效。 在尺寸数量大于样本数量的情况下仍然有效。 在决策函数中使用训练点的子集(称为支持向量),因此它也具有内存效率。 多功能:可以为决策功能指定不同...
原创
发布博客 2018.11.22 ·
271 阅读 ·
0 点赞 ·
0 评论

python之pyechart

Echarts是百度可视化工具,pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,为了与 Python 进行对接,方便在 Python 中直接使用数据生成图官方教程:http://pyecharts.org/#/zh-cn/prepare支持图形Bar(柱状图/条形图) ...
原创
发布博客 2018.11.21 ·
6384 阅读 ·
2 点赞 ·
2 评论

python之scipy

SciPy是一组专门解决科学计算中各种标准问题域的包的集合,主要包括下面这些包:scipy.integrate 数值积分例程和微分方程求解器 scipy.stats 标准连续和离散概率分布(如密度函数、采样器、连续分布函数等)、各种统计检验方法,以及更好的描述统计法 scipy.linalg 扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能 sci...
原创
发布博客 2018.11.21 ·
751 阅读 ·
2 点赞 ·
2 评论

特征工程

目录0 前言1 什么是特征工程2 数据与特征处理2.1 数据采集2.2 数据格式化2.3 数据清洗2.4 数据采样2.5 特征处理3 特征选择3.1 过滤型3.2 包裹型3.3 嵌入型0 前言一个项目的基本流程:1.了解项目情况:项目概述,项目目标(需求),现有解决方案情况2.获取数据:数据来源、数据量3.数据清洗:处理异常值、空...
原创
发布博客 2018.11.21 ·
164 阅读 ·
0 点赞 ·
0 评论

python之random

如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,以下就是这篇文章的介绍。random.random() 生成随机数In [33]: import randomIn [34]: random.random() #生成0-1的随机浮点数Out[34]...
原创
发布博客 2018.11.20 ·
105 阅读 ·
0 点赞 ·
0 评论

决策树

简介决策树(DT)是用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过学习从数据特征推断出的简单决策规则来预测目标变量的值。adboost:集成算法,基本算法的优化算法gbdboost决策树的一些优点是:易于理解和解释。树木可以看到。 需要很少的数据准备。其他技术通常需要数据规范化,需要创建虚拟变量并删除空值。但请注意,此模块不支持缺失值。 使用树的成本(即,预...
原创
发布博客 2018.11.20 ·
128 阅读 ·
0 点赞 ·
0 评论

python之queue

Queue是python标准库中的线程安全的队列(FIFO)实现,提供了一个适用于多线程编程的先进先出的数据结构,即队列,用来在生产者和消费者线程之间的信息传递基本FIFO队列class queue.Queue(maxsize=0)FIFO即First in First Out,先进先出。Queue提供了一个基本的FIFO容器,使用方法很简单,maxsize是个整数,指明了队列中能存放...
原创
发布博客 2018.11.20 ·
119 阅读 ·
0 点赞 ·
0 评论

python之pickle

Python提供了一个标准库,名为pickle(泡菜、腌制),它可以保存和加载几乎任何Python数据独享,包括列表。一旦把数据“腌制”到一个文件,它将会持久存储,可以在以后某个日期/时间读入另外一个程序。用dump保存,用load恢复使用pickle很简单:只需要导入所需的模块,然后使用dump()保存数据,以后某个时间使用load()恢复数据。处理腌制数据时的唯一要求是,必须以...
原创
发布博客 2018.11.19 ·
97 阅读 ·
0 点赞 ·
0 评论
加载更多