4-10课:让变形更高效:与经典二分查找相同的时间复杂度

56 篇文章 6 订阅 ¥69.90 ¥99.00
本文探讨了在含有重复元素的数列中进行二分查找算法的时间复杂度问题。原始算法由于加入顺序查找部分导致时间复杂度上升至O(n),而通过改进算法,可以在保持O(logn)时间复杂度的同时解决重复元素查找问题。通过对比分析和代码展示,解释了如何实现这一优化。
摘要由CSDN通过智能技术生成

重复元素数列二分查找的时间复杂度

代码修改影响了时间复杂度

上一章,我们已经写出了新的处理含有重复数字数列的二分查找的repeatingSequenceBinarySearch()函数。

那么,是不是重复元素查找的问题就解决了啊?从功能上说是这样。

但是请注意,这个repeatingSequenceBinarySearch()函数(上一章代码-7)的时间复杂度是多少?

二分查找的时间复杂度不是之前讲过的$O(logn)$吗?那是经典二分查找的时间复杂度。

现在我们的算法可是做了修改呀——加了一段挨个找的代码哦(如下):

while m + delta >= 0 and m + delta < len(arr) and arr[m + delta] == tn:
    m += delta  

代码-8

加进去的这段代码,自身的时间复杂度是多少呢?

它自身的时间复杂度就是$O(n)$。

新代码的时间复杂度

因为新加进去的代码的功能是沿着数列顺序前行(或后退)直到找到重复数列的头(或者尾)为止,完全不能跳跃——这一点和顺序查找是一样的。因此它的时间复杂度也和顺序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶锦鲤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值