逻辑回归
今天我们要讲的模型叫做 Logistic Regression (LR),一般翻译为逻辑回归。
LR 是一种简单、高效的常用分类模型——有点奇怪是吧,为什么名字叫做“回归”却是一个分类模型,这个我们稍后再讲。先来看看这个 LR 本身。
LR 的模型函数记作:$y=h(x)$,具体形式如下:
$h_\theta(x) = \frac{1}{1 + e^{-\theta^Tx }} $
对应到一元自变量的形式为:
$h(x) = \frac{1}{1 + e^{-(a + bx) }} $
设 $z = a + bx$,则:
$h(z) = \frac{1}{1 + e^{-z }} $
这样的一个函数被称为逻辑函数,它在二维坐标中的表现是这样的:
因为表现为 S 形曲线,所以逻辑函数又被称为 Sigmod 函数(S 函数)。
Sigmod 这样一个奇怪而别扭的形式到底是谁、因为什么想出来的呢?又怎么想到用它来做分类的呢?<