第14课:逻辑回归——非线性逻辑函数的由来

本文介绍了逻辑回归模型的起源,从指数增长模型出发,通过修正项形成逻辑函数,最终得到逻辑回归的通用形式。逻辑函数在人口增长、分类问题等领域有广泛应用,它是一个非线性函数,提供了对线性模型的补充,特别是在解决实际问题时,逻辑回归因其简洁性和有效性而被广泛使用。
摘要由CSDN通过智能技术生成

逻辑回归

今天我们要讲的模型叫做 Logistic Regression (LR),一般翻译为逻辑回归。

LR 是一种简单、高效的常用分类模型——有点奇怪是吧,为什么名字叫做“回归”却是一个分类模型,这个我们稍后再讲。先来看看这个 LR 本身。

LR 的模型函数记作:$y=h(x)$,具体形式如下:

$h_\theta(x) = \frac{1}{1 + e^{-\theta^Tx }} $

对应到一元自变量的形式为:

$h(x) = \frac{1}{1 + e^{-(a + bx) }} $

设 $z = a + bx$,则:

$h(z) = \frac{1}{1 + e^{-z }} $

这样的一个函数被称为逻辑函数,它在二维坐标中的表现是这样的:

enter image description here

因为表现为 S 形曲线,所以逻辑函数又被称为 Sigmod 函数(S 函数)。

Sigmod 这样一个奇怪而别扭的形式到底是谁、因为什么想出来的呢?又怎么想到用它来做分类的呢?<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶锦鲤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值