基于小波变换的图像融合技术及步骤解析

基于小波变换的图像融合是将原始图像进行小波分解,得到一系列不同频段的子图像,这些子图像能够反映图像的局部特征,然后用不同的融合规则对子图像进行处理,最后利用小波逆变换得到融合图像。
基于小波变换的图像融合步骤:
(1)对原始图像进行预处理和图像配准;
(2)对处理过的图像分别进行小波分解,得到低频和高频分量;
(3)对低频和高频分量采用不同的融合规则进行融合;
(4)进行小波逆变换;
(5)得到融合图像。


ID:775622393037308

IU不错哦


基于小波变换的图像融合是一种常用的图像融合方法,它通过对原始图像进行小波分解,融合不同频段的子图像,最终得到融合图像。在这个过程中,主要包括对原始图像进行预处理和图像配准、小波分解、融合规则的选择以及小波逆变换等步骤。

首先,在进行图像融合之前,需要对原始图像进行预处理和图像配准。预处理是为了去除图像中的噪声和不必要的信息,同时增强图像的对比度和清晰度。图像配准是为了消除不同图像之间的几何差异,使它们在像素级别上对齐,以便后续的小波分解和融合操作能够顺利进行。

接下来,对处理过的图像进行小波分解,得到低频和高频分量。小波变换是一种基于窗口的信号分析方法,通过将信号与一组基函数(小波)进行内积运算,可以将信号在不同频率和时间尺度上进行分解。在图像处理中,小波分解将图像分解成不同频段的子图像,其中低频分量反映图像的全局特征,高频分量反映图像的局部细节。

然后,对低频和高频分量采用不同的融合规则进行融合。融合规则的选择是图像融合的关键,它决定了融合图像的质量和效果。常用的融合规则包括加权平均法、最大值法、最小值法等。加权平均法将低频和高频分量按一定的权重进行加权平均,最大值法选取低频和高频分量中的最大值作为融合结果,最小值法选取低频和高频分量中的最小值作为融合结果。根据不同的应用场景和需求,可以选择适合的融合规则。

在完成融合规则的选择后,进行小波逆变换,将融合后的低频和高频分量合并为融合图像。小波逆变换是小波分解的逆过程,它将分解后的子图像通过逆变换恢复为原始图像。在小波逆变换过程中,需要注意保持图像的细节和清晰度,避免信息的丢失。

最后,通过以上步骤,就可以得到基于小波变换的图像融合结果。图像融合能够提取出图像的全局和局部特征,并将它们合理地融合到一起,增强图像的细节和对比度,同时减少图像中的噪声和失真。基于小波变换的图像融合在图像处理和计算机视觉领域具有广泛的应用,例如目标识别、图像增强、医学影像等。

综上所述,基于小波变换的图像融合是一种有效的图像处理方法,它通过对原始图像进行小波分解和融合规则的选择,实现对图像的细节增强和噪声抑制。在实际应用中,可以根据具体需求和场景选择合适的融合规则和参数,以达到最佳的图像融合效果。未来,基于小波变换的图像融合方法还有许多改进和拓展的空间,可以进一步提高图像的质量和清晰度,满足不同领域和应用的需求。

相关的代码,程序地址如下:http://imgcs.cn/622393037308.html

本论文所做的工作及创新主要包括以下几个方面: 1)查阅了国内外一定数量的期刊、文献,综述了图像融合的基本概念,总结了该领域 研究的最新进展,对存在的问题进行了讨论,并展望了未来的发展趋势。 2)对图像融合的算法进行了细致的归类,具体解释了空域、变换域图像融合算法,像 素级、特征级以及决策级图像融合算法各自的适用范围和特点。 3)综述了该领域的热点图像融合问题,对多传感器图像融合、多分辨率图像融合以及 多聚焦图像融合,分别做出了具体说明。 4)回顾了傅立叶变换和小波变换的发展,由多分辨率分析引出了金字塔型和基十小波 变换的两类图像分解与重构方法;特别针对影响图像融合效果的各种因素:融合图像的类 型、小波变换的基函数、滤波器、分解层数以及融合规则,进行了归纳总结。 5)讨论了图像融合质量的评价方法,单独列出了主观和客观相结合的方法。在仿真实 验中,使用MATLAB中的图形用户界面GUI和小波工具箱(Wavelet Toolbox,实现了图 像融合质量评价的可视化。该研究成果可参照已发表论文《小波图像融合评价方法的综合 比较研究》。 6)综述了吉布斯现象,并讨论了抑制伪吉布斯现象的平移不变小波变换。将在基十“平 移平均”思想的Cycle Spinning算法用十图像融合,提出了一种基十小波变换的Cycle Spinning图像融合的方法(称为CSDWT,简称为CS方法),并在仿真实验中实现了该过 程,取得了较好的主观和客观融合效果。该研究成果可参照已发表论文《小波变换结合Cycle Spinning图像融合的研究》。 7)进一步研究了Cycle Spinning算法,就平移方向和平移量两个问题提出了不同的平 移策略,从}fu改进了CS方法;仿真实验证明,这种改进没有减弱图像的融合效果,ifu b_ 减少了计算量。该研究成果可参照已发表论文《基十小波变换的Cycle Spinning图像融合的 扩展研究》。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值