一、概率论
1、全概率公式、贝叶斯公式应用
记住标黄的两段,上考场直接套数据,公式都不用写
2、期望、方差、协方差的定义以及性质证明
(1) 期望
(2) 方差
(3) 协方差
二、数理统计
1、参数估计
(1) 矩估计(点估计)
令总体期望等于样本均值 ,即 E X = X ‾ EX=\overline{X} EX=X
(2) 最大似然估计(点估计)
定义:使似然函数取得最大值的
θ
\theta
θ
三步走:
① 写出似然函数
L
(
θ
)
L(\theta)
L(θ),即概率密度的乘积;
② 取对数,求导数;
③ 令导数为0,得
θ
\theta
θ的最大似然估计量。
极大似然估计的特殊情况,即
L
(
θ
)
L(\theta)
L(θ)去除所有常数后,剩余与
θ
\theta
θ 有关的部分是个幂函数,取对数、求导数后的结果应大于0,此时需要用极大似然估计的定义求解。具体分析可见综合例题第三小问。
(3) 综合例题(点估计)
(4) 区间估计(单个正态总体)
区间估计是指根据样本资料给总体参数划出一个大致的范围,以期该范围能覆盖参数的真实值,该区间通常是由样本估计量的值即点估计值加减估计误差得到的。
补充:三大抽样分布
① 总体均值的区间估计
框里的公式要掌握,不论是死记硬背还是自己推导
② 总体方差的区间估计
2、假设检验
① 原假设和备择假设分别是什么?
原假设
H
0
H_0
H0:研究者想收集证据予以反对的假设(一般包含等号)
备择假设
H
1
H_1
H1: 研究者想收集证据予以支持的假设
② 选哪个检验统计量?
③ 如何做出决策?
检验统计量落入拒绝域,或p值小于
α
\alpha
α时,拒绝原假设。
例题:
三、分布式统计计算
1、蒙特卡洛积分
利用换元法更改积分上下限为[0,1] (可以跳过,我猜不考那么复杂的)
代码:
x <- seq(.1, 2.5, length = 10) # φ(x)是个函数,要先生成自变量x
m <- 10000
u <- runif(m)
cdf <- numeric(length(x))
for (i in 1:length(x)) {
g <- x[i] * exp(-(u * x[i])^2 / 2)
cdf[i] <- mean(g) / sqrt(2 * pi) + 0.5
}
再补充一个用蒙特卡洛法求
π
\pi
π:
N = 10000
x = matrix(runif(N*2),N,2) # N个点 [0,1]之间
plot(x)
L = x[,1]^2+x[,2]^2<=1 # x[,1] 第一列
points(x[L,], col="red")
n = sum(L)
p = 4*n/N
p
预计2.24能写完所有知识点,文章的更新要重新审核,会导致博客会打不开,等五分钟左右再看就行。