期末综合考试

文章涵盖了概率论中的全概率公式、贝叶斯公式及其应用,期望、方差、协方差的定义和性质。在数理统计部分,详细讲解了参数估计的矩估计和最大似然估计方法,以及区间估计在正态总体中的应用。此外,还介绍了分布式统计计算中的蒙特卡洛积分,并给出了示例代码。
摘要由CSDN通过智能技术生成

请添加图片描述

一、概率论

1、全概率公式、贝叶斯公式应用

请添加图片描述
记住标黄的两段,上考场直接套数据,公式都不用写
请添加图片描述

2、期望、方差、协方差的定义以及性质证明

(1) 期望

请添加图片描述

(2) 方差

请添加图片描述

(3) 协方差

请添加图片描述

二、数理统计

1、参数估计

(1) 矩估计(点估计)

令总体期望等于样本均值 ,即 E X = X ‾ EX=\overline{X} EX=X请添加图片描述

(2) 最大似然估计(点估计)

定义:使似然函数取得最大值的 θ \theta θ
三步走:
① 写出似然函数 L ( θ ) L(\theta) L(θ),即概率密度的乘积;
② 取对数,求导数;
③ 令导数为0,得 θ \theta θ的最大似然估计量。请添加图片描述
极大似然估计的特殊情况,即 L ( θ ) L(\theta) L(θ)去除所有常数后,剩余与 θ \theta θ 有关的部分是个幂函数,取对数、求导数后的结果应大于0,此时需要用极大似然估计的定义求解。具体分析可见综合例题第三小问。请添加图片描述

(3) 综合例题(点估计)

请添加图片描述

(4) 区间估计(单个正态总体)

  区间估计是指根据样本资料给总体参数划出一个大致的范围,以期该范围能覆盖参数的真实值,该区间通常是由样本估计量的值即点估计值加减估计误差得到的。
补充:三大抽样分布在这里插入图片描述

① 总体均值的区间估计
框里的公式要掌握,不论是死记硬背还是自己推导
在这里插入图片描述

在这里插入图片描述
② 总体方差的区间估计
在这里插入图片描述

2、假设检验

① 原假设和备择假设分别是什么?
原假设 H 0 H_0 H0:研究者想收集证据予以反对的假设(一般包含等号)
备择假设 H 1 H_1 H1: 研究者想收集证据予以支持的假设
② 选哪个检验统计量?请添加图片描述
③ 如何做出决策?
检验统计量落入拒绝域,或p值小于 α \alpha α时,拒绝原假设。

例题:
请添加图片描述
请添加图片描述

三、分布式统计计算

1、蒙特卡洛积分

在这里插入图片描述
利用换元法更改积分上下限为[0,1]     (可以跳过,我猜不考那么复杂的)
在这里插入图片描述
代码:

x <- seq(.1, 2.5, length = 10)  # φ(x)是个函数,要先生成自变量x
m <- 10000
u <- runif(m)
cdf <- numeric(length(x))
for (i in 1:length(x)) {
	g <- x[i] * exp(-(u * x[i])^2 / 2)
	cdf[i] <- mean(g) / sqrt(2 * pi) + 0.5
}

再补充一个用蒙特卡洛法求 π \pi π:
在这里插入图片描述
请添加图片描述

N = 10000
x = matrix(runif(N*2),N,2) # N个点 [0,1]之间
plot(x)
L = x[,1]^2+x[,2]^2<=1 # x[,1] 第一列
points(x[L,], col="red")
n = sum(L)
p = 4*n/N
p

预计2.24能写完所有知识点,文章的更新要重新审核,会导致博客会打不开,等五分钟左右再看就行。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值