【做练习】最大上升子序列(树状数组) 树状数组的原理及应用详解

文章介绍了如何使用树状数组解决最大上升子序列问题,详细阐述了树状数组的原理,包括何时使用、如何建立、Ask和Update操作,并提供了具体的解题思路和方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 题目

总时间限制: 1000ms 内存限制: 65536kB

描述

一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入

输入的第一行是序列的长度N (1 <= N <= 300000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到100000000之间。

输出

最长上升子序列的长度。

样例输入

7
1 7 3 5 9 4 8

样例输出

4


2. 分析

这是一道经典题,我们通常立刻想到动态规划来做。但是我们本题中序列的长度很大(300000),只有1000ms,动态规划的 O ( n 2 ) O(n^2) O(n2)复杂度肯定会TimeOut。

2.1. 树状数组

这里介绍另一办法:树状数组,它能够将复杂度降低到 O ( n l o g ( n ) ) O(n log(n)) O(nlog(n))
树状数组是一种数组的特殊存储方式,它储存区间属性而不是每个元素。

2.1.1. 什么时候用树状数组?

我们假设数组的任意闭区间 A [ i : j ] A[i:j] A[i:j]具有属性 P ( A [ i : j ] ) P(A[i:j]) P(A[i:j]),并且,若我们把 A [ i : j ] A[i:j] A[i:j]划分为任意数量个子区间 A [ i : i 1 ] , A [ i 1 : i 2 ] , . . . , A [ i k : j ] A[i: i_1],A[i_1:i_2],...,A[i_k: j] A[i:i1],A[i1:i2],...,A[ik:j]后, P ( A [ i : j ] ) P(A[i:j]) P(A[i:j])总是可以由这些子区间的属性 P ( A [ i : i 1 ] ) , P ( A [ i 1 : i 2 ] ) , . . . , P ( A [ i k : j ] ) P(A[i: i_1]),P(A[i_1:i_2]),...,P(A[i_k:j]) P(A[i:i1]),P(A[i1:i2]),...,P(A[ik:j]) 推导得出。这时我们称这个数组对属性 P P P

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值