1. 题目
总时间限制: 1000ms 内存限制: 65536kB
描述
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入
输入的第一行是序列的长度N (1 <= N <= 300000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到100000000之间。
输出
最长上升子序列的长度。
样例输入
7
1 7 3 5 9 4 8
样例输出
4
2. 分析
这是一道经典题,我们通常立刻想到动态规划来做。但是我们本题中序列的长度很大(300000),只有1000ms,动态规划的 O ( n 2 ) O(n^2) O(n2)复杂度肯定会TimeOut。
2.1. 树状数组
这里介绍另一办法:树状数组,它能够将复杂度降低到 O ( n l o g ( n ) ) O(n log(n)) O(nlog(n))。
树状数组是一种数组的特殊存储方式,它储存区间属性而不是每个元素。
2.1.1. 什么时候用树状数组?
我们假设数组的任意闭区间 A [ i : j ] A[i:j] A[i:j]具有属性 P ( A [ i : j ] ) P(A[i:j]) P(A[i:j]),并且,若我们把 A [ i : j ] A[i:j] A[i:j]划分为任意数量个子区间 A [ i : i 1 ] , A [ i 1 : i 2 ] , . . . , A [ i k : j ] A[i: i_1],A[i_1:i_2],...,A[i_k: j] A[i:i1],A[i1:i2],...,A[ik:j]后, P ( A [ i : j ] ) P(A[i:j]) P(A[i:j])总是可以由这些子区间的属性 P ( A [ i : i 1 ] ) , P ( A [ i 1 : i 2 ] ) , . . . , P ( A [ i k : j ] ) P(A[i: i_1]),P(A[i_1:i_2]),...,P(A[i_k:j]) P(A[i:i1]),P(A[i1:i2]),...,P(A[ik:j]) 推导得出。这时我们称这个数组对属性 P P P