冒泡排序的核心是将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。
记忆的时候,你就把数组头部朝下放着,然后从底部开始往上冒泡。但是为了好编程,并不是盯着那一个泡泡不放的,而是反正最后一共要进行n(n-1)次比较,所以我最后只要能把这个次数比较够就行了,所以先将头部的一个元素和其他所有位置的元素进行比较,如果发现头部比其他轻,那么就往上冒。你也可以倒过来编写程序,但是要记住:
这个算法是基于位置比较和元素交换的。快排也是基于元素交换的。书上说的时间复杂度应该是把每次交换看成了O(1)
下面我写了一个程序实现了冒泡排序:
void bubbleSort(int* a,int n){
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(a[i]>a[j]){
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
}
}
}
当然上述算法我并没有很好的模拟出冒泡的过程,因为我虽然是基于元素交换,并且也交换了一定的次数,但是我交换的过程却不是基于相邻元素的,所以这也就造成了我们的算法不是特别的形象,因而我们要改成基于相邻元素交换的程序:
void bubbleSort2(int* a,int n){
int i,j,last;
i = n-1;
while(i>0){
last = 0;
for(j=0;j<i;j++){
if(a[j+1]<a[j]){
//swap items
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
//set the value of j
last = j;
}
}
i = last;
}
}
但是亲爱的读者,你们读到这里可能就有点迷糊了,其实我的第一个程序是错误的!这是为什么呢?
我们知道分析一个算法就要分析它的时间复杂度,所以我们不妨来分别分析一下两个算法的时间复杂度吧,而且这样的分析都是从最好情况和最差情况两个方面来进行分析的。
第一个算法在最好情况下(初始序列已有序),需要进行n(n-1)/2次比较,因而最好情况下时间复杂度是O(n^2).最差情况下,不仅需要n(n-1)/2次比较,还需要3n(n-1)/2次移动,所以最坏情况下时间复杂度是O(n^2)。其实它更类似与简单选择排序。
我们再来看一下第二个算法。最好情况下只需要进行一趟排序,进行(n-1)次比较,因此最好情况下的时间复杂度是O(n).最坏情况下和上述算法一样,为O(n^2)
因此我们可以看出,上述两种算法,在最坏情况下的算法时间复杂度是一样的,但是在最好情况下,两者的时间复杂度却相差了一个数量级。因此,第一个算法在实现上是不合理的,尽管它能够实现我们所希望的排序效果。