插入排序就是每一步都将一个待排数据按其大小插入到已经排序的数据中的适当位置,直到全部插入完毕。
注意是已经排序的数据中的适当位置。
也就是说,每一步的插入都是往已经排好序的子数组中插入新的值。该算法的时间复杂度也是O(n^2),精确的说是O(n(n-1))
下面是我写的一个程序:
void insertSort(int* a,int n){
for(int i=1;i<n;i++){
int cntval = a[i];
int j=i;
for(;j>0;j--){
if(a[j-1]>cntval)
a[j] = a[j-1];
else
break;//检测到插入位置便跳出来
}
a[j] = cntval;
}
}
下面我们来看一下教科书上写的更标准的程序:
void insertSort(int* a,int n){
for(int i=1;i<n;i++){
int j=i;
int temp = a[i];
while(j>0&&temp<a[j-1]){
a[j]=a[j-1];j--;
}
a[j] = temp;
}
}
我们来分析一下算法的时间复杂度:
最好情况下,即已有序的情况下,执行n-1趟,每一趟只比较一次,移动元素两次,总的比较次数是n-1,移动元素次数是2(n-1),因此最好情况下时间复杂度是O(n);最坏情况下,每趟比较i次,移动元素i+2次,因此需要的比较次数和移动次数是N(N-1)/2,(N+4)(N-1)/2,为O(N^2).
我们可以看出,在内排序的简单排序算法中,除了最简单的简单选择排序,插入排序和冒泡排序在最好情况下的时间复杂度都是O(N).这其实是很值得欣慰的一件事。