CDH之Impala原理、安装、调优,以及Python连接Impala

1、概述

官方图标

  • Cloudera Impala是一款 时髦的、开源的、大规模并行处理的 SQL引擎
    为Hadoop提供 低延时、高并发的 查询分析功能

1.1、特点

  • 对内存的依赖很大,速度快但容易内存溢出
  • data locality:尽可能地将读数和计算分配在同一台机器,减少网络开销
  • 支持各种文件格式,如:文本文件、序列文件、RCFile、Avro、Parquet
  • 支持压缩,如:snappy、gzip、bz2
  • 可访问HIVE元数据,查询HIVE数据
  • HIVE数据更新时,需要刷新该HIVE表【缺点】

1.2、架构

架构图

  1. 创建impalad进程,impalad向StateStore提交注册订阅信息,StateStore创建1个statestored进程,用来处理impalad的注册订阅信息
  2. 客户端提交SQL
  3. Query Planner解析SQL,生成解析树;然后Planner把解析树变成若干PlanFragment,发送到Query Coordinator
  4. Coordinator从元数据库中获取元数据,从HDFS的名称节点中获取数据地址,以得到存储这个查询相关数据的所有数据节点
  5. Query Coordinator初始化相应impalad上的任务执行,即把查询任务分配给所有存储这个查询相关数据的数据节点
  6. Query Executor读取HDFS数据
  7. Query Executor之间交换信息
  8. Query Coordinator汇聚来自各个Query Executor的结果
  9. Query Coordinator把结果返回给客户端。
impala组成 进程 说明
Catalog daemon catalogd 作为Impala的目录存储库和元数据接入网关
Statestore daemon statestored 将整个集群的元数据传播到所有Impala进程
Impala daemon impalad 1、负责协调客户端提交的查询的执行;
2、给其它impalad分配任务以及汇总其它Impalad的执行结果;
3、读取HDFS

建议Impalad运行在DataNode所在节点
建议StateStore和Catalog服务在同一节点

2、CDH添加impala

添加服务

点选impala,然后继续

角色分配

无修改

Hue配置关联impala

2.1、配置

impalad内存

StateStore工作线程数

  • Impalad Deamon内存限制:
    若工作节点内存128G,120G用于计算,NN分了80G,那么可分40G给impalad
  • StateStore工作线程数:建议调大,8或10都可

3、impala客户端

3.1、impala-shell

常用选项 说明 默认值
-h, --help 显示帮助信息
-i IMPALAD, --impalad=IMPALAD impalad连接的<host:port> 当前主机的主机名:21000
-f QUERY_FILE,
--query_file=QUERY_FILE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小基基o_O

您的鼓励是我创作的巨大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值