每天都想躺平的大喵
码龄5年
  • 35,447
    被访问
  • 34
    原创
  • 48,818
    排名
  • 19
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2017-08-21
博客简介:

weixin_39925939的博客

查看详细资料
  • 3
    领奖
    总分 379 当月 27
个人成就
  • 获得77次点赞
  • 内容获得45次评论
  • 获得84次收藏
创作历程
  • 12篇
    2022年
  • 22篇
    2021年
成就勋章
TA的专栏
  • docker
    1篇
  • Git
    3篇
  • python
    10篇
  • pytorch_geometric代码详解
    8篇
  • 图深度学习
    8篇
  • linux常用命令
    1篇
  • numpy&pandas
    7篇
  • python大规模数据处理技巧
    1篇
  • networkx
    2篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习深度学习pytorchtransformer
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

docker笔记: 命令自动补齐 & “-bash: 404:: command not found“报错

之前服务器上的docker没有自动补齐功能,就按照docker官网提供的流程走了一遍https://docs.docker.com/compose/completion/#available-completions:最后出现报错"-bash: 404:: command not found",docker的自动补齐命令也没有实现。检查了一下,发现/etc/bash_completion.d/docker-compose文件并没有下载成功,打开之后里面只有"404 Not Found"。所以要养成下载文
原创
发布博客 2022.05.12 ·
100 阅读 ·
0 点赞 ·
0 评论

git常见问题

找不到公钥id_rsa.pub问题:通常公钥密钥文件都在路径~/.ssh或者/home/UserName/.ssh下面,使用cat ~/.ssh/id_rsa.pub就可以显示公钥。但是前几天我在配置的时候发现找不到相应文件。解决方案:在重新生成密钥公钥的时候,显示说密钥已存在,仔细检查才发现我的公钥在/root/.ssh路径中。push失败push失败时可以先用ssh -T git@github.com检查连接,当显示"connect to host github.com port 22: Con
原创
发布博客 2022.04.21 ·
554 阅读 ·
0 点赞 ·
0 评论

git的常用命令

git查看本地分支对应哪个远程分支$ git branch -vv新建远程分支新建一个本地分支:$ git checkout -b dev把新建的本地分支push到远程服务器,远程分支与本地分支同名(当然可以随意起名):$ git push origin dev:dev本地分支关联远程分支git branch --set-upstream-to=origin/dev devgit branch --set-upstream-to origin/...
原创
发布博客 2022.04.21 ·
68 阅读 ·
0 点赞 ·
0 评论

【一些git原理相关】

下图的例子显示了哑协议和智能协议的差别:智能协议显示拷贝进度智能协议更快http和https需要用户名和密码,ssh协议使用公钥私钥git存储原理三大存储类型:commit, tree, blob以下案例图引用极客课程《玩转Git三剑客》...
原创
发布博客 2022.04.21 ·
436 阅读 ·
0 点赞 ·
0 评论

python datetime, time常用用法

字符串转datetimeimport datetimedate = '2022-04-19'datetime.datetime.strptime(date, '%Y-%m-%d')>>> datetime.datetime(2022, 4, 19, 0, 0)datetime转字符串import datetimedate = '2022-04-19'date = datetime.datetime.strptime(date, '%Y-%m-%d')dateti.
原创
发布博客 2022.04.19 ·
627 阅读 ·
0 点赞 ·
0 评论

python pandas中的算术/计算和数据对齐

pandas中的算术和数据对齐数据对齐pandas中,对Series和DataFrame进行算术计算时,会自动对齐索引,如果一个索引不是在两份数据中都存在,相应的位置上会产生缺失值。Seriess1 = pd.Series(np.arange(4), index=list('abcd'))s2 = pd.Series(np.arange(4), index=list('cdef'))s1+s2>>> a NaNb NaNc 2.0d 4.0
原创
发布博客 2022.01.29 ·
1866 阅读 ·
0 点赞 ·
0 评论

python pandas中的索引,选择和过滤

Series根据位置或者index索引其中位置和index既可以是单独的一个值,也可以是一个数组。s1 = pd.Series(np.arange(6), index=list('abcdef'))s1>>> a 0b 1c 2d 3e 4f 5# 根据位置索引s1[[0, 2, 4]] # 等同于s1.iloc[[0, 2, 4]]>>> a 0c 2e 4# 根据index索引
原创
发布博客 2022.01.29 ·
1933 阅读 ·
0 点赞 ·
0 评论

python 中小众但很有用的一些函数(持续更新)

StringName.zfill(width) 或者str.zfill(StringName, width)在字符串的左边填入0,使结果字符串宽度和width一致。这个函数在数字显示时特别有用。a = 'a'a.zfill(4)>>> '000a'str.zfill(a, 4)>>> '000a'str(1).zfill(2)>>> '01'['2022-{}-01'.format(str(i).zfill(2)) for i.
原创
发布博客 2022.01.26 ·
474 阅读 ·
0 点赞 ·
0 评论

python matplotlib 画图时坐标轴重叠,显示不全和图片保存时不完整的问题

问题在使用matplotlib作图的时候,有的时候会遇到画图时坐标轴重叠,显示不全和图片保存时不完整的问题。如下:解决方案画图时重叠或者显示不全的问题画图时加上参数设置tight_layout=True画完所有子图后,设置plt.tight_layout()# 加上tight_layout=True 参数设置fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12,6), tight_layout=True)labels = ['2
原创
发布博客 2022.01.26 ·
2451 阅读 ·
1 点赞 ·
0 评论

mobaxterm git standard input 问题

今天在mobaxterm中使用git的时候,发现不管是敲一些命令,比如git branch -av或git log,终端的左下角都显示standard input, 必须按下q才会退出并进入终端?在网上一番查找,参考这个终于找到原因https://www.jianshu.com/p/2157b59b45e7原因:当前版本默认设置了GIT_PAGER的环境变量为busybox less -R解决方案:不想这样的话,可以在自己的bash初始化脚本中unset GIT_PAGER然后可以在自己的
原创
发布博客 2022.01.10 ·
143 阅读 ·
0 点赞 ·
0 评论

impala常用命令(持续更新ing)

impala常用命令
原创
发布博客 2022.01.07 ·
260 阅读 ·
1 点赞 ·
0 评论

python pandas中使用loc和iloc时需注意的点

Python pandas中的DataFrame和Series都可以用loc, iloc切片来索引数据。iloc根据Index位置索引数据,与常规的python数据切片是前闭后开相同,iloc也是前闭后开。loc根据Index内容索引数据,与常规的python数据切片是前闭后开不同,loc是前后闭合。这一点需要注意,尤其是使用0开始的数字作为Index的时候,因为Index的内容和位置相同,所以很容易搞混。具体可以看一下以下实例的区别:import numpy as npimport pan
原创
发布博客 2022.01.06 ·
843 阅读 ·
0 点赞 ·
0 评论

python list和numpy常用拼接方式

python list和numpy常用拼接方式list1,加号+2,append vs extend3,切片,将一个list插入另一个list的指定位置np.array1, np.append(arr, values, axis=None)2.1, np.hstack(tup) 水平拼接,可多个array2.2, np.vstack(tup) 垂直拼接,可多个array3,np.concatenate((a1, a2, ...)),可多个array4.1, np.column_stack(tup),可多个一
原创
发布博客 2021.12.29 ·
597 阅读 ·
0 点赞 ·
0 评论

jupyter notebook 如何跨文件复制多个代码块/cells (复制到另外一个文件)

在Jupyter Notebook的时候,有时需要从一个文件中拷贝多个cells到另外一个文件。如果只是简单地选中+拷贝的话,是没有用的。关键点在于使用 Esc进入command模式。 下面是具体的操作步骤:在源文件中Shift+鼠标点击或者Shift+上下箭头选中多个cell。Esc进入command模式,然后Ctrl+C。到目标文件中,点击你要复制的位置,然后Esc进入command模式,最后Ctrl+V就可以了。会了这个方式后,终于不用一个一个复制了,神清气爽!...
原创
发布博客 2021.12.27 ·
2641 阅读 ·
6 点赞 ·
0 评论

word2vec和node2vec笔记(更新ing)

最近仔细看了一下Node2vec,这里汇总一下相关知识点。首先Node2vec和Deepwalk都是NLP中的word2vec在图中的拓展应用,其中Node2vec又是在Deepwalk基础上的拓展,主要有以下两个方面的改进:在图中随机游走生成序列时,Node2vec从Deepwalk的无偏进阶到参数可控的有偏。Node2vec采用Negtive Sampling代替了Deepwalk中的Hierarchical Samplingword2vecword2vec相关知识点:SkipGram
原创
发布博客 2021.12.22 ·
937 阅读 ·
2 点赞 ·
0 评论

python 格式化输出format, f,% 小结

python格式化输出的几种方式方法一:formatname = 'Harry'age = 13.52'{} is {:.0f}'.format(name, age)>>>'Harry is 14'方法二:f这个是format形式的方便版name = 'Harry'age = 13.52f'{name} is {age:.0f}'>>>'Harry is 14'方法三:%name = 'Harry'age = 13.52'%s is %d
原创
发布博客 2021.12.21 ·
519 阅读 ·
0 点赞 ·
0 评论

python 字典dict初始化/创建方法总结

字典常用,但有些初始化方法因为不经常用就会陌生,这里总结一下。d = {'k1':1, 'k2':2}d = dict(k1=1, k2=2)一个包含tupe的listdd = [('a',1), ('b',2), ('c',3)]dict(dd)>>> {'a': 1, 'b': 2, 'c': 3}一个应用from collections import Counterdict(Counter('aabbbc').most_common())>>>
原创
发布博客 2021.12.20 ·
953 阅读 ·
0 点赞 ·
0 评论

Python pandas使用map, apply和applymap实现对DataFrame进行单列/行,多列/行,以及所有元素的操作

python pandas使用map, apply和applymap实现对DataFrame进行单列/行,多列/行,以及所有元素的操作map:只可以实现对DataFrame中单列或单行的操作apply: 可以实现对DataFrame的多列或多行的操作applymap: 可以实现对DataFrame中所有元素的整体操作最近在查看网上关于pandas的DataFrame使用map, apply和applymap的说明时,发现许多博文未能写清楚关键点,所以在这里整理一下每个函数的使用范围和适用情况。map:只
原创
发布博客 2021.12.11 ·
484 阅读 ·
2 点赞 ·
0 评论

Python pandas 将字典dict转化为DataFrame时需避免的坑

Python pandas 将字典dict转化为DataFrame时需避免的坑一,字典的value都是scalar,既都只有一个值二,字典的value长度不相同时先上结论:如果想将字典dict转化为只有一行的DataFrame,但字典中的值又存在数组等长度大于一的情况,可以先使用pd.Series(),再使用to_frame将Series转化为DataFrame,最后转置DataFrame。可避免一些坑。 以下是详细阐述。一,字典的value都是scalar,既都只有一个值有这样一个字典d = {
原创
发布博客 2021.12.10 ·
1296 阅读 ·
1 点赞 ·
0 评论

python大规模数据处理:pandas DataFrame代替字典dict实现快速查询,避免循环和长耗时

大规模数据处理:pandas DataFrame代替字典dict实现快速查询,避免循环和长耗时结论问题解决方案结论先上结论:对于规模比较大的数据,不要创建以tuple等为键的字典,可以创建pandas DataFrame,利用DataFrame的多层Index来实现查询。这样做的原因有二:创建大规模的字典时,尤其键是tuple这类数据是,非常慢。但是创建同规模的DataFrame时,效率很高。字典一次只可以查询一个键,避免不了循环。DataFrame可以返回一组键对应的值,避免循环,耗时大大减少。
原创
发布博客 2021.12.09 ·
437 阅读 ·
1 点赞 ·
0 评论
加载更多