算是放松下自己,看看在初中课本上还能学学到那些新东西,正所谓“温故而知新”嘛。
采用的是鲁教版图书,图片一部分摘录于书中,部分为网上。
基本平面图形
角

引起关于时钟中对时钟和分针的思考
时针一分钟旋转0.5°,分针一分钟旋转6°
三角板的妙用

15n 都是15°的倍数
多边形中三角形的个数

三角形的个数:多边形-2(在该顶点相交的两条线段去除)
线段
四边形内一点到顶点的最短距离


由这个题我又想了想那三角形呢?
开始看的是B站一up主讲的三角形的四心,发现都不是。后来一查,原来有名字呐,费马点。
拓展:三角形的四心及费马点
重心
即三条中线的交点
证明方法:相似三角形和中位线
在向量中的应用

垂心
即三角形三边高的交点
利用向量的乘积来证明,在向量的数量积里有应用。

外心
即外接圆的圆心,三边垂直平分线的交点
性质:到三个顶点的距离相等。

内心
即内切圆的圆心,三个角平分线的交点。
对直角三角形来说

对一般三角形来说

单位向量

费马点

在物理学中的应用:重力势能最小
三角形的四心问题详解
整式的除法
数形结合法理解积的乘方
积的乘方等于把积的每一个因式分别乘方,然后将所得的ࣦ积相乘.



将2和5的次方化成同指数
零指数幂和负整数指数幂

多项式与多项式相乘的拆解引例


通过几何图形边与边的关系、边与面积的关系引入了二次函数的最值问题
平方差公式的几何表示形式

平方差公式的简单应用

完全平方公式的几何表示形式

这是相加时候的图形

这是相减时候的图形
完全平方公式的使用



和二项式和杨辉三角联系

关于杨辉三角我们不难发现每一行的首末都是1,并且下一行的数比上一行多1。中间各数都写在上一行两数的中间,且等于它们的和。



由这个问题想到了几个平均数
该题的答案是不等,相差1/4
(需要问一下自己,为什么不等,差值有什么特殊性)
其实就是用到了勾股定理证明算数平均数和平方平均数的大小
射影定理证明算数平均数、几何平均数、调和平均数的大小
这里看了B站的视频,给出了其证明。
其原理用到了射影定理,在一个圆中给予证明。
射影定理和几种平均数比较思路
原理:相似三角形的比值


小时候因为那些“偷懒”代数计算出来忽略了原理证明,真是一大“损失“呐。
未完待续的代码编译

任意一个不是有完全相同数字的组成的四位数,如果对它们的每位数字重新排序,组成一个最大的数各一个最小的数,然后用最大数减去最小数,差不够四位数时补零,类推下去,最后将变成一个固定的数:6174,这就是卡布列克常数。
//类似水仙花数
//判断数的位数(是不是可以根据strlen判断长度)
//创建一个数组
//申请动态内存组成数组(2倍该数的大小)
//对数进行正反排序
//然后根据根据位权进行相乘得到这两个数
//做差
//重复上面的步骤
#include <stdio.h>
#include <string.h>
int main()
{
return 0;
}
这里只写了思路,未完待续。
数学归纳思想



本质:数x乘以1001x 即1000x + x
相交线与平行线
同角或等角的余角相等,同角或等角的补角相等(和等量代换类似)
同位角只是位置相同,相不相等另说,内错角和同旁内角同理
坐地日行八万里和内错角

运用了两条直线被第三条直线所截,内错角相等。单位角度测算地球周长。
两刀剪出来的正方形


数据的收集与整理
这里的“人数”表示优、中、良的频繁程度,因此也称为频数 。 数据越多,分的组数也就多. 当数据在 100 以内时,通常按照数据的多少,分成5至12 组.
变量之间的关系
三种方法表示变量之间的关系
表格表示法,表达式表示法,图像表示法
小车下滑引出变量之间的概念
支撑物高度 h 和小车下滑时间 t 都在变化,它们都是变量 (variable). 其中 t 随 h 的变化而变化,h 是自变量(independent variable),t是因变量(depentent variable). 在这一变化过程中,小车下滑的距离(木板长度)一直没有变化. 像这种 在变化过程中数值始终不变叫做常量(constant).