【蓝桥杯训练题·深基4.例13】质数口袋

题目描述

小 A 有一个质数口袋,里面可以装各个质数。他从 2 2 2 开始,依次判断各个自然数是不是质数,如果是质数就会把这个数字装入口袋。

口袋的负载量就是口袋里的所有数字之和。

但是口袋的承重量有限,装的质数的和不能超过 L L L。给出 L L L,请问口袋里能装下几个质数?将这些质数从小往大输出,然后输出最多能装下的质数的个数,数字之间用换行隔开。

输入格式

一行一个正整数 L L L

输出格式

将这些质数从小往大输出,然后输出最多能装下的质数个数,所有数字之间有一空行。

样例 #1

样例输入 #1

100

样例输出 #1

2
3
5
7
11
13
17
19
23
9

样例 #2

样例输入 #2

5

样例输出 #2

2
3
2

样例 #3

样例输入 #3

11

样例输出 #3

2
3
5
3

提示

数据保证, 1 ≤ L ≤ 10 5 1 \le L \le {10}^5 1L105

代码:

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int k = sc.nextInt();
        int num[] = new int[10000];
        num[0] = 2;
        int sum = 2;
        int count = 1;

        int i = 2;

        while (sum <= k) {
            if (zhishu(i)) {
                num[i] = i;
                sum += i;
                i++;
                count++;
                if (sum > k) {
                    count--;
                    i--;
                    num[i] = 0;
                    break;
                }
            } else i++;
        }
        if (k == 1) {
            System.out.println(0);
        } else {
            for (int j = 0; j <= i; j++) {
                if (num[j] != 0) {
                    System.out.println(num[j]);
                }
            }
            System.out.println(count);
        }
    }
    public static boolean zhishu(int num){
        boolean bl = false;
        for(int i = 2;i<=num-1;i++){
            if(num%i == 0){
                bl = false;
                break;
            }
            if(i==num-1){
               bl = true;
            }
        }
        return bl;
    }



}



这个代码虽然正确,但是num[]sum的临界处处理的并不好。其中,在质数判断中,借助numi取余的结果为b1赋值,得到num是否为质数的真值情况。为了避免讨论num=2的情况,我们对num[]进行了部分初始化。在sum临界处,为了避免sum+=i之后sum>=k的情况,在sum运算后我们对sum进行了检验。最后对k=1的情况分开讨论。


可以看出,这个代码还是很粗糙的


借助人工智能,有以下代码:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class PrimePocket {

    // 判断一个数是否为质数
    private static boolean isPrime(int num) {
        if (num <= 1) return false;
        for (int i = 2; i * i <= num; i++) {
            if (num % i == 0) return false;
        }
        return true;
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int L = sc.nextInt();
        sc.close();

        List<Integer> primes = new ArrayList<>();
        int sum = 0;
        int maxCount = 0;

        for (int i = 2; sum + i <= L; i++) {
            if (isPrime(i)) {
                primes.add(i);
                sum += i;
                maxCount++;
            }
        }

        // 输出质数
        for (int prime : primes) {
            System.out.println(prime);
        }

        // 输出最多能装下的质数个数
        System.out.println(maxCount);
    }
}

1 优化指数判断

在所给的代码段中,循环的条件是 i * i <= num,这是一个优化技巧,称为 “平方根优化” 或 “试除法优化”。
考虑判断一个数 num 是否为质数。一般来说,我们需要检查 num 能否被 2 到 num - 1 之间的整数整除。但是实际上,我们只需要检查 num 能否被 2 到 sqrt(num) 之间的整数整除,即 i * i <= num
这是因为如果 num 有一个大于 sqrt(num) 的因数,那么它必然也有一个小于 sqrt(num) 的因数。因此,我们只需要检查到 sqrt(num) 就足够了。
例如,如果 num 是一个合数,即有一个大于 1 和小于 num 的因数 d,那么必然有 d = a * b,其中 ab 都是正整数。如果 a 大于等于 sqrt(num),那么 b 必然小于等于 sqrt(num)。同理,如果 b 大于等于 sqrt(num),那么 a 必然小于等于 sqrt(num)。因此,只需要检查到 sqrt(num) 就可以判断 num 是否为质数。
所以,使用 i * i <= num 作为循环条件,可以减少循环的次数,提高程序的效率。

2 优化sum的临界处处理

在循环的判断条件了,将i的判断改为sum+i的判断。

3 优化键值对应

利用ArrayList集合将符合条件的num收入集合之中,并利用foreach语句对目标集合打印。

--------------------蓝桥杯备赛系列正在不断更新中,欢迎各位大佬指导----------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值