特殊的密码锁
标签(空格分隔): 算法竞赛
总时间限制: 1000ms 内存限制: 1024kB
描述
有一种特殊的二进制密码锁,由n个相连的按钮组成(n<30),按钮有凹/凸两种状态,用手按按钮会改变其状态。
然而让人头疼的是,当你按一个按钮时,跟它相邻的两个按钮状态也会反转。当然,如果你按的是最左或者最右边的按钮,该按钮只会影响到跟它相邻的一个按钮。
当前密码锁状态已知,需要解决的问题是,你至少需要按多少次按钮,才能将密码锁转变为所期望的目标状态。
输入
两行,给出两个由0、1组成的等长字符串,表示当前/目标密码锁状态,其中0代表凹,1代表凸。
输出
至少需要进行的按按钮操作次数,如果无法实现转变,则输出impossible。
样例输入
011
000
样例输出
1
#include <iostream>
#include <algorithm>
#include <cstring>
#include <memory>
#define N 33
using namespace std;
void re(char *a,int i) {
if (a[i]=='0') a[i]='1';
else a[i]='0';
}
void act(char *a,int i,int length) {
re(a,i);
if (i>0) re(a,i-1);
if (i<length-1) re(a,i+1);
}
int main() {
char ori[N],aim[N],temp[N];
scanf("%s",ori);
scanf("%s",aim);
int len=strlen(ori),num1=0,num2=0,flag=0,minans;
for (int k=0;k<2;k++) {
memcpy(temp,ori,sizeof(ori));
if (k) { //表示首位不反转
for (int i=1;i<len;i++) {
if (temp[i-1]!=aim[i-1]) {
act(temp,i,len);
num1++;
}
}
if (temp[len-1]==aim[len-1]) flag=1;
}
else {
act(temp,0,len);
num2++;
for (int i=1;i<len;i++) {
if (temp[i-1]!=aim[i-1]) {
act(temp,i,len);
num2++;
}
}
if (temp[len-1]==aim[len-1]) flag=1;
}
}
if (flag) {
minans=min(num1,num2);
printf("%d\n",minans);
}
else printf("impossible\n");
return 0;
}
这道题是熄灯问题的一个简化。如果我们能遍历所有可能的操作,我们一定可以从中找到一个答案。但是可能的组合太多了,有2^30种,计算复杂度会超了,只能想其他的办法。还是遍历,如果我们能缩小遍历的范围,或者给出更好的遍历方法也可以。考虑到,如果采用从头开始的遍历方法,那么,当前位置的锁操作不操作,是由它前一个锁的状态决定的。因为如果我们从第i-1个锁码遍历过来,来到第i个锁码,那么现在,第i-1个锁码状态如何,就只会由第i个锁码的状态决定。
通过这个递推关系,我们得知,只要确定了i=1 时的操作,后面的操作就都可以确定了。 那么,我们可不可以简单的设置为“当i=1 时,如果码相同就不反转,如果码不同就反转”?不可以!比如说111111,目标码000000,实际上按两次就行了,但是按刚才的设置,会按3次。所以,我们要确定确定i=1 时的操作,就要分开考虑:按,以及不按。代码中用一个两次的for循环完成。