BZOJ 2095 [Poi2010]Bridges 二分 最大流(混合图欧拉回路)

该博客探讨了BZOJ 2095题目的解决方案,涉及一张无重边且联通的图,寻找从点1出发遍历每条边每个点一次的最短路径。文章提到使用二分法配合最大流判断是否存在欧拉回路,并详细解释了如何处理无向边,通过构建混合图和调整边的方向来确保图的欧拉性。通过网络流判断是否存在满足条件的路径,若达到满流状态,则表明存在欧拉回路。
摘要由CSDN通过智能技术生成

题目大意:给出一张n个点m条边的联通图,无重边,每条边有正反两个权值。现要从点1出发经过每条边每个点一次,问最大边权最小是多少。

最大最小容易想到二分,问题是如何判断是否有欧拉回路。

图不连通自然没有欧拉回路。
将大于限制的边设为不可走,新的图变成了混合图,即同时存在有向边和无向边。
首先,有向图的欧拉回路存在的条件是入度等于出度。
可以将无向边随意定向,默认从x到y。记一个点的度数为入度-出度。现在问题转化为如何转换无向边的方向使所有点的度数为0。若度数为奇数则一定没有欧拉回路因为将一条边反向会使一个点的度数加或减2,一定不可能得到0。

用网络流来判断。
对于每条无向边,y向x连边,流量为1,表示边可以反向。
对于每个点x,如果度数大于0,源点向x连边,否则x向汇点连边,流量为度数除以2,表示一个点的度数变成0需要的变化量。
如果满流则说明有欧拉回路

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define N 1005
#define INF 1000000000
using namespace std;
struct Data {
    int a,b,c,d;
    void scan() {
        scanf("%d%d%d%d",&a,&b,&c,&d);
        if(c>d) swap(c,d), swap(a,b);
    }
}g[N*2];
struct Edge {
    int from,to,nxt,cap;
    Edge() {}
    Edge(int _from,int _to,int _nxt,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值