卷积函数是卷积神经网络(CNN)非常核心和重要的函数,在搭建CNN时经常会用到,因此较为详细和深入的理解卷积函数具有十分重要的意义。
1、tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None):在给定4维的输入和过滤器的张量时,计算一个2维卷积。
参数详解:
input:输入的参数或者说是图像tenors,input=[batch,in_height,in_width,in_channels],batch为图像数量,in_height和in_width分别为图像的长和宽,in_channels为图像的颜色通道(彩色为3,黑白为1)。一般我们在定义图像信息时,x都是1维的,比如x= tf.placeholder(tf.float32,[None,784]),None表示不限制输入数量,784表示一个784维的向量;在x传入conv2d之前需要对x进行变形,即将x变为input的形式,比如说x_image=tf.reshape(x,[-1,28,28,1]),其中-1代表样本数不确定,经过变形后x_image就可以被conv2d函数使用了。
filter:卷积核(滤波器),filter应该输入的是卷积的参数,filter=[fi