TensorFlow之卷积函数(conv2d、depthwise_conv2d、separable_conv2d)

本文详述了TensorFlow中的卷积函数,包括tf.nn.conv2d的基本使用,如输入参数、卷积核、步长和填充方式,强调了卷积在卷积神经网络中的核心地位。
摘要由CSDN通过智能技术生成

卷积函数是卷积神经网络(CNN)非常核心和重要的函数,在搭建CNN时经常会用到,因此较为详细和深入的理解卷积函数具有十分重要的意义。

1、tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None):在给定4维的输入和过滤器的张量时,计算一个2维卷积。

参数详解:

input:输入的参数或者说是图像tenors,input=[batch,in_height,in_width,in_channels],batch为图像数量,in_height和in_width分别为图像的长和宽,in_channels为图像的颜色通道(彩色为3,黑白为1)。一般我们在定义图像信息时,x都是1维的,比如x= tf.placeholder(tf.float32,[None,784]),None表示不限制输入数量,784表示一个784维的向量;在x传入conv2d之前需要对x进行变形,即将x变为input的形式,比如说x_image=tf.reshape(x,[-1,28,28,1]),其中-1代表样本数不确定,经过变形后x_image就可以被conv2d函数使用了。

filter:卷积核(滤波器),filter应该输入的是卷积的参数,filter=[fi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值