最小生成树(prim, kruscal + 非递归)

本文深入解析了Kruskal和Prim两种经典的最小生成树算法。Kruskal算法通过并查集处理边的合并,确保生成树的形成;而Prim算法则采用贪心策略,逐步构建生成树。文章提供了完整的C++实现代码,帮助读者理解算法细节。
摘要由CSDN通过智能技术生成

kruscal常用:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
using namespace std;

struct node
{
    int u, v, w;
} e[10001];

bool cmp(node a, node b)
{
    return a.w < b.w;
}

int f[101];
int getf(int u)
{
    if (u == f[u])
        return u;
    return f[u] = getf(f[u]);
}
// 以后就用非递归的 !!!!!!!!!!!!!!!
inline int Getf(int u)
{
    if (u == f[u])
        return u;
    int fa = u;
    while (fa != f[fa])
        fa = f[fa];
    while (u != fa) {
        int t = f[u];
        f[u] = fa;
        u = t;
    }
    return fa;
}
bool merge(int u, int v)
{
    int t1 = getf(u), t2 = getf(v);
    if (t1 != t2)
    {
        f[t2] = t1;
        return 1;
    }
    return 0;
}

int main()
{
    int n, m;
    while (~scanf("%d %d", &n, &m))
    {
        int i;
        for (i = 0; i < m; i++)
            scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].w);
        for (i = 1; i <= n; i++)
            f[i] = i;
        sort(e, e + m, cmp);
        int ans = 0, cnt = 0;
        for (i = 0; i < m; i++)
        {
            if (merge(e[i].u, e[i].v))
            {
                ans += e[i].w;
                cnt++;
            }
            if (cnt == n - 1)
                break;
        }
        printf("%d\n", ans);
    }
    return 0;
}

prim算法(没优化)

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;

int main()
{
    int n, m;
    while (~scanf("%d %d", &n, &m))
    {
        int e[105][105], dis[105] = {0}, book[105] = {0};
        int i;
        for (i = 1; i <= n; i++)
        {
            int j;
            for (j = 1; j <= n; j++)
            {
                if (i == j)
                    e[i][j] = 0;
                else
                    e[i][j] = inf;
            }
        }
        while (m--)
        {
            int u, v, w;
            scanf("%d %d %d", &u, &v, &w);
            if (w < e[u][v])
                e[u][v] = e[v][u] = w;
        }
        book[1] = 1;
        dis[1] = 0;
        int sum = 0;
        for (i = 2; i <= n; i++)
            dis[i] = e[1][i];
        for (i = 1; i <= n; i++)
        {
            int mmin = inf, k = 1, j;
            for (j = 1; j <= n; j++)
            {
                if (book[j] == 0 && dis[j] < mmin)
                {
                    mmin = dis[j];
                    k = j;
                }
            }
            book[k] = 1;
            sum += dis[k];
            for (j = 1; j <= n; j++)
            {
                if (book[j] == 0)
                {
                    if (dis[j] > e[k][j])
                        dis[j] = e[k][j];
                }
            }
        }
        printf("%d\n", sum);
    }
    return 0;
}

优化就是dijkstra的优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值