目录
描述
汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。
后来,这个传说就演变为汉诺塔游戏:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上
经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题。
算法思路:
1.如果只有一个金片,则把该金片从源移动到目标棒,结束。
2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒。
输入描述
一个整数N,表示A柱上有N个碟子。(0<n<=10)
输出描述
若干行,即移动的最少步骤
用例输入 1
3
用例输出 1
A To C A To B C To B A To C B To A B To C A To C
题解思路
汉诺塔问题是一个经典的递归问题。其基本思路是:
- 如果只有一个盘子,直接将它从源柱移动到目标柱。
- 如果有多个盘子,先将前n-1个盘子从源柱移动到辅助柱,然后将第n个盘子从源柱移动到目标柱,最后将前n-1个盘子从辅助柱移动到目标柱。
这个过程可以通过递归来实现,每次递归都将问题规模缩小,直到只剩下一个盘子。
具体步骤如下:
- 定义一个递归函数
hanoi
,该函数接受四个参数:盘子的数量n
,源柱from
,辅助柱aux
,目标柱to
。 - 当
n
为1时,直接输出从from
到to
的移动。 - 否则,先递归调用
hanoi
将前n-1
个盘子从from
移动到aux
,然后输出从from
到to
的移动,最后递归调用hanoi
将前n-1
个盘子从aux
移动到to
。
通过这种方式,我们可以得到所有盘子从源柱移动到目标柱的最少步骤。
代码实现
#include <iostream>
using namespace std;
// 递归函数,用于解决汉诺塔问题
void hanoi(int n, char from, char to, char aux) {
if (n == 1) {
// 如果只有一个盘子,直接从源柱移动到目标柱
cout << from << " To " << to << endl;
return;
}
// 将前n-1个盘子从源柱移动到辅助柱
hanoi(n - 1, from, aux, to);
// 将第n个盘子从源柱移动到目标柱
cout << from << " To " << to << endl;
// 将前n-1个盘子从辅助柱移动到目标柱
hanoi(n - 1, aux, to, from);
}
int main() {
int n;
cin >> n; // 输入盘子的数量
hanoi(n, 'A', 'C', 'B'); // 调用递归函数解决汉诺塔问题
return 0;
}