汉诺塔(递归)c++

目录

描述

题解思路

代码实现


描述

汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。

后来,这个传说就演变为汉诺塔游戏:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上

经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片:  如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C   此外,汉诺塔问题也是程序设计中的经典递归问题。

算法思路:
1.如果只有一个金片,则把该金片从源移动到目标棒,结束。
2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒。

输入描述

一个整数N,表示A柱上有N个碟子。(0<n<=10)

输出描述

若干行,即移动的最少步骤

用例输入 1 

3

用例输出 1 

A To C
A To B
C To B
A To C
B To A
B To C
A To C

题解思路

汉诺塔问题是一个经典的递归问题。其基本思路是:

  1. 如果只有一个盘子,直接将它从源柱移动到目标柱。
  2. 如果有多个盘子,先将前n-1个盘子从源柱移动到辅助柱,然后将第n个盘子从源柱移动到目标柱,最后将前n-1个盘子从辅助柱移动到目标柱。

这个过程可以通过递归来实现,每次递归都将问题规模缩小,直到只剩下一个盘子。

具体步骤如下:

  1. 定义一个递归函数hanoi,该函数接受四个参数:盘子的数量n,源柱from,辅助柱aux,目标柱to
  2. n为1时,直接输出从fromto的移动。
  3. 否则,先递归调用hanoi将前n-1个盘子从from移动到aux,然后输出从fromto的移动,最后递归调用hanoi将前n-1个盘子从aux移动到to

通过这种方式,我们可以得到所有盘子从源柱移动到目标柱的最少步骤。

代码实现

#include <iostream>
using namespace std;

// 递归函数,用于解决汉诺塔问题
void hanoi(int n, char from, char to, char aux) {
    if (n == 1) {
        // 如果只有一个盘子,直接从源柱移动到目标柱
        cout << from << " To " << to << endl;
        return;
    }
    // 将前n-1个盘子从源柱移动到辅助柱
    hanoi(n - 1, from, aux, to);
    // 将第n个盘子从源柱移动到目标柱
    cout << from << " To " << to << endl;
    // 将前n-1个盘子从辅助柱移动到目标柱
    hanoi(n - 1, aux, to, from);
}

int main() {
    int n;
    cin >> n; // 输入盘子的数量
    hanoi(n, 'A', 'C', 'B'); // 调用递归函数解决汉诺塔问题
    return 0;
}

所以,你学会了吗?还不会?那就

关注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值