BZOJ 1012之线段树解法

         根据题意,很容易想到线段树,单点修改,区间查询,线段树的模板大家都有,所以就不再做过多解释。不过有一点值得一提,在我做这道题的时候使用了cin和cout,后来队友告诉我,bzoj使用了O2优化,使用cin和cout可能会报错,果然,我改了cin和cout之后就没有问题了。

         

#include <iostream>
#include <bits/stdc++.h>

using namespace std;



long long min1[2000005],D;

void push_up(long long rt)
{
    min1[rt]=max(min1[rt<<1],min1[rt<<1|1]);
}


void build(long long l,long long r,long long rt)
{
    //cout<<rt<<endl;
    if(l==r)
    {
        min1[rt]=0;
        return;
    }
    long long mid=(l+r)>>1;
    //cout<<mid<<endl;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
    //cout<<rt<<endl;
    push_up(rt);
    return;
}

void update(long long L,long long C,long long l,long long r,long long rt)
{
    if(l==r)
    {
        min1[rt]+=C;
        min1[rt]%=D;
        return;
    }
    long long mid=(l+r)>>1;
    if(L<=mid)
        update(L,C,l,mid,rt<<1);
    else
        update(L,C,mid+1,r,rt<<1|1);
    push_up(rt);
    return;
}

long long query(long long L,long long R,long long l,long long r,long long rt)
{
    if(l>=L&&r<=R)
    {
        return min1[rt];
    }
    long long mid=(l+r)>>1;
    long long ans=-100000000;
    if(L<=mid)ans=max(ans,query(L,R,l,mid,rt<<1));
    if(R>mid)ans=max(ans,query(L,R,mid+1,r,rt<<1|1));
    return ans;
}

int main()
{
    for(long long i=0;i<=1000000;i++)
        min1[i]=0;
    long long M;
    char s[10];
    scanf("%lld %lld",&M,&D);
    build(1,240005,1);
    long long t=0;
    long long L;
    long long N=0;
    for(long long i=0;i<M;i++)
    {
        scanf("%s %lld",s,&L);
        if(s[0]=='A')
        {
            N++;
            L%=D;
            L+=t;
            L%=D;
            update(N,L,1,240005,1);
        }
        else if(s[0]=='Q')
        {
            //cout<<L<<' '<<N<<endl;
            t=query(N-L+1,N,1,240005,1);
            printf("%lld\n",t);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值