目录
1094 The Largest Generation (25 分)
最近没做PAT了,有些忙,打算一个月激情冲刺PAT,目前就是偶尔做题。
1094 The Largest Generation (25 分)
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
Input Specification:
Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] ... ID[K]
where ID
is a two-digit number representing a family member, K
(>0) is the number of his/her children, followed by a sequence of two-digit ID
's of his/her children. For the sake of simplicity, let us fix the root ID
to be 01
. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
Sample Input:
23 13
21 1 23
01 4 03 02 04 05
03 3 06 07 08
06 2 12 13
13 1 21
08 2 15 16
02 2 09 10
11 2 19 20
17 1 22
05 1 11
07 1 14
09 1 17
10 1 18
Sample Output:
9 4
题目大意:
输入 N 个节点,M 个非叶子节点
M 个非叶子节点的编号,和 K 个孩子节点
输出节点个数最多的那层节点数量,和所在的层数,根节点层数为 1
设计思路:
- 邻接链表存储所给的树
- DFS 遍历树,并记录各层节点的个数
答案:
#include <stdio.h>
int tree[110][110], cnt[110];
int levelnum[110];
void dfs(int v, int level)
{
int i;
levelnum[level]++;
for (i = 0; i < cnt[v]; i++)
dfs(tree[v][i], level + 1);
}
int main(void)
{
int n, m;
int id, k, a;
int i;
scanf("%d%d", &n, &m);
while (m--) {
scanf("%d%d", &id, &k);
for (i = 0; i < k; i++) {
scanf("%d", &a);
tree[id][cnt[id]++] = a;
}
}
dfs(1, 1);
int max = 1;
for (i = 2; i <= n; i++)
if (levelnum[max] < levelnum[i])
max = i;
printf("%d %d", levelnum[max], max);
return 0;
}
1130 Infix Expression (25 分)
Given a syntax tree (binary), you are supposed to output the corresponding infix expression, with parentheses reflecting the precedences of the operators.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤ 20) which is the total number of nodes in the syntax tree. Then N lines follow, each gives the information of a node (the i-th line corresponds to the i-th node) in the format:
data left_child right_child
where data
is a string of no more than 10 characters, left_child
and right_child
are the indices of this node's left and right children, respectively. The nodes are indexed from 1 to N. The NULL link is represented by −1. The figures 1 and 2 correspond to the samples 1 and 2, respectively.
Figure 1 | Figure 2 |
Output Specification:
For each case, print in a line the infix expression, with parentheses reflecting the precedences of the operators. Note that there must be no extra parentheses for the final expression, as is shown by the samples. There must be no space between any symbols.
Sample Input 1:
8
* 8 7
a -1 -1
* 4 1
+ 2 5
b -1 -1
d -1 -1
- -1 6
c -1 -1
Sample Output 1:
(a+b)*(c*(-d))
Sample Input 2:
8
2.35 -1 -1
* 6 1
- -1 4
% 7 8
+ 2 3
a -1 -1
str -1 -1
871 -1 -1
Sample Output 2:
(a*2.35)+(-(str%871))