描述
SVM是一种二类分类模型,基本模型是定义在特征空间中的间隔最大的线性分类器。
学习策略是间隔最大化。
训练集线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机;
训练集近似线性可分时,通过软间隔最大化,学习一个线性支持向量机;
训练集线性不可分时,通过核技巧与软间隔最大化,学习一个非线性支持向量机;
超平面
附上链接,一篇讲解超平面的干货,讲的很好!!!
http://www.sohu.com/a/206572358_160850
在样本空间中,划分超平面可通过如下线性方程来描述:
w为超平面的法向量,决定了超平面的方向;b为位移项,决定了超平面到原点的距离。
任意