机器学习——支持向量机(SVM)之超平面、间隔与支持向量

本文介绍了支持向量机(SVM)的基础知识,包括超平面的定义、线性可分支持向量机、函数间隔和几何间隔的概念。SVM的目标是找到最大间隔的超平面,从而实现最佳分类。支持向量是在超平面附近的样本点,它们对确定超平面至关重要。
摘要由CSDN通过智能技术生成

描述

SVM是一种二类分类模型,基本模型是定义在特征空间中的间隔最大的线性分类器
学习策略是间隔最大化

训练集线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机
训练集近似线性可分时,通过软间隔最大化,学习一个线性支持向量机
训练集线性不可分时,通过核技巧与软间隔最大化,学习一个非线性支持向量机

超平面

附上链接,一篇讲解超平面的干货,讲的很好!!!
http://www.sohu.com/a/206572358_160850
在样本空间中,划分超平面可通过如下线性方程来描述:
在这里插入图片描述
w为超平面的法向量,决定了超平面的方向;b为位移项,决定了超平面到原点的距离。
任意

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值