旋转图像
题目描述
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
解题思路
个人AC
分层旋转,n
阶矩阵最多可分为(n+1)/2
层。
class Solution {
public void rotate(int[][] matrix) {
int ltr = 0, ltc = 0; // 左上角的行坐标和列坐标
int rbr = matrix.length - 1, rbc = matrix[0].length - 1;
while (ltr < rbr && ltc < rbc) {
rotateLayer(matrix, ltr++, ltc++, rbr--, rbc--);
}
}
private void rotateLayer(int[][] matrix, int ltr, int ltc, int rbr, int rbc) {
int times = rbc - ltc; // or rbr - ltr
for (int i = 0; i < times; i++) {
int tmp = matrix[ltr][ltc + i];
matrix[ltr][ltc + i] = matrix[rbr - i][ltc];
matrix[rbr - i][ltc] = matrix[rbr][rbc - i];
matrix[rbr][rbc - i] = matrix[ltr + i][rbc];
matrix[ltr + i][rbc] = tmp;
}
}
}
时间复杂度: O ( n 2 ) O(n^2) O(n2);
空间复杂度: O ( 1 ) O(1) O(1)。
最优解
同上。