LeetCode 0048 -- 旋转图像

旋转图像

题目描述

给定一个 n × n 的二维矩阵表示一个图像。

将图像顺时针旋转 90 度。

说明:

你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

示例 1:

给定 matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

原地旋转输入矩阵,使其变为:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]

示例 2:

给定 matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

原地旋转输入矩阵,使其变为:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

解题思路

个人AC

分层旋转,n阶矩阵最多可分为(n+1)/2层。

class Solution {
    public void rotate(int[][] matrix) {
        int ltr = 0, ltc = 0; // 左上角的行坐标和列坐标
        int rbr = matrix.length - 1, rbc = matrix[0].length - 1;
        while (ltr < rbr && ltc < rbc) {
            rotateLayer(matrix, ltr++, ltc++, rbr--, rbc--);
        }
    }
    
    private void rotateLayer(int[][] matrix, int ltr, int ltc, int rbr, int rbc) {
        int times = rbc - ltc; // or rbr - ltr
        for (int i = 0; i < times; i++) {
            int tmp = matrix[ltr][ltc + i];
            matrix[ltr][ltc + i] = matrix[rbr - i][ltc];
            matrix[rbr - i][ltc] = matrix[rbr][rbc - i];
            matrix[rbr][rbc - i] = matrix[ltr + i][rbc];
            matrix[ltr + i][rbc] = tmp;
        }
    }
}

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( 1 ) O(1) O(1)

最优解

同上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值